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ABSTRACT

Queries are formal representations of information needs and play a central role in information
retrieval. Recent pretrained Transformer models have largely improved our abilities of processing
natural language texts, including natural language queries. The way we understand queries, the
techniques we use to generate queries need to be updated accordingly. This dissertation focuses
on queries, particularly query generations.

Over the last 30 years researchers have been trying many ways to optimize queries. Rel-
evance modeling is a classic technique which tries to surface more relevance information from
pseudo-relevant documents. Our first attempt in query generation is incorporating field informa-
tion into this technique. However, relevance models often result in long, uninterpretable queries.
Our experiments also show that relevance models tend to make small improvements on web
collections. We then perform an analysis on the value of rewriting queries, using automatically
generated queries from search log and human-written queries from crowdsourcing. Our results
show that rewriting queries can further improve retrieval effectiveness by a large amount. But,
automatically generated queries are still not as good as human written queries, which motivates
us to study query generation techniques by leveraging the recent progress in neural networks.

Query generation is a fundamental and versatile technique that has diverse applications. It
can be used to produce query variations, reformulate queries, enrich documents, and so forth.
Recent transformer networks has facilitated language generation tasks. These generation models
are often trained with supervised learning, but we have observed that such learning objectives
do not necessarily lead to effective queries, which means the generations have high readabil-
ity but are often not effective as queries. We propose a novel task SNLQ (Strong Natural Lan-
guage Queries) to combine readability and effectiveness objectives. To achieve both objectives,
we propose a two-step approach — supervised learning for readability followed by reinforcement
learning for effectiveness.

Finally, while we explore natural language query generation, the new form of queries has
posed new challenges to ranking models compared to traditional keyword queries. Similar to
generation models, ranking models also benefit from transformer networks. Inspired by tradi-
tional generative and discriminative approaches to ranking, we design a method to incorporate
query generation (generative) into a ranking model (discriminative) so we can use a unified trans-
former architecture to transfer knowledge between query generation and ranking which results
in more generalized ranking models.






INTRODUCTION

Search engines process millions or even billions of queries every single day. Many of these queries
come from users who have diverse information needs. Unsurprisingly, queries can vary dramati-
cally from simple keyword queries such as “facebook log in” to complex natural language queries
such as “who was the us president when the red sox won the world series”. Modern search en-
gines may use user profile data such as location and search history to aid the search, but the
query is still the most important and sometimes the only information a search engine has to un-
derstand the user’s intent. Understanding the query and the information need it represents has
always been the central task to a search engine.

In the early days, our search engines were limited to treating a query as a few keywords
which contains only the most salient words but disregard word ordering. For decades, users
have also been accustomed to using such keyword queries to express their information needs.
Many of us might have learned to not use stopwords such as “a”, “an”, and “the” in the query as
they would be discarded by the search engine. If we want to search for the first President of the
United States, we can use a query like “first president united states” instead of “whe-is-the first
president efthe united states”. We might also have learned that word ordering did not matter so
“united states first president” is also likely to work. While users try their best to tailor the queries
in the keyword language our search engines prefer, common problems in human languages such
as imprecision, vagueness and ambiguity still happen.

The simplest example of query problems is perhaps spelling mistakes. Studies have found
10% [48] to 20% [63] queries contain spelling mistakes. This problem is relatively easy to fix, and
we have mature techniques to fix them. Figure 1.1 shows an example of how a search engine can
fix spelling errors and provide query suggestions. Spelling mistakes can be detected by looking
up a dictionary and the correct spellings can be suggested through a properly designed user in-
terface. With such an interface, search engines can also suggest related queries (“Britney Griner”
and “Britney Theriot” in Figure 1.1) to prevent such errors from happening as the user keeps
typing.

These front-end optimizations are helpful in improving query quality, but they do not solve
the deeper problems in expressing information needs unambiguously. An information need can
be represented by different terms, which is known as synonymy. The query “apple company”



4 ¢  Chapter 1. Introduction

brittne X

(=

==} Britney Spears
American singer-songwriter

A Brittney Griner
S American professional basketball player

= Britney Theriot
JRY Actress

Figure 1.1: Spell correction and query suggestion interface. Spell mistakes can be identified and
corrected before a query is issued to a search engine.

and “apple corporation” refer to the same thing; “teen pregnancy” and “teenage pregnancy” also
refer to the same topic. These phrases rarely cause trouble to humans but can result in substantial
problems known as vocabulary mismatches for search engines. The vocabulary mismatch prob-
lem happens when exact matching is applied in retrieving documents where terms in a query
and a document are expected to be exactly the same. A document using “teen pregnancy” may
be simply missed for the query “teenage pregnancy” because “teen” and “teenage” do not match.

The translation from an information need to a query also relies on a user’s cognitive abilities,
resulting in queries with varying quality. Belkin [12] has referred to users’ needs for information
as the anomalous state of knowledge where users have a gut feeling but do not know exactly
what they want. Imagine a scenario where a user is trying to look for information about this
phenomenon. Without knowing the terminology in advance, they will probably end up with
several attempts in formulating the query until they eventually learned the phrase “anomalous
state of knowledge” from related documents. These are just a few examples of challenges we are
faced with in processing queries. All these factors are hidden barriers between a user and search
engine quality.

Although a human cannot guess the vocabulary of a collection and formulate the perfect
query, we can learn to improve it though thanks to recent advances. Researchers have invented
several techniques (e.g. relevance feedback [174], BM25-based query expansion [171] and rele-
vance models [106]) to optimize a query. In the background, a query may be rewritten or ex-
panded. Figure 1.2 shows the query “teen pregnancy” and the document containing “teenage
pregnancy” are successfully matched. This type of vocabulary mismatches are relatively easy to
identify. Relevance models, which were invented in 2001, are perhaps one of the most popular
and obvious solutions for this problem. Just like a user struggling with the anomalous state of
knowledge, relevance models improve a query by learning new words from top-ranked docu-
ments. Promising new words are added to formulate a new query. However, the outcome is often
mixed. It is not unusual for relevance models to improve some queries but harm others [69], and
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Key findings. In 2017, births to teenage mothers made up 2.2% of all live births. Births to
teenage mothers decreased by more than 40% between 2006 and 2017 from 17.6 to 9.2
live births per 1,000 females aged 15-19. 3 Apr 2020

https://lwww.aihw.gov.au > reports > contents » health > te...

Australia's children, Teenage mothers - Australian Institute of ...

Figure 1.2: The query uses “teen” while the returned document uses “teenage”. Vocabulary mis-
matches can be alleviated using query optimization techniques including pseudo-relevance feed-
back, synonyms, and word embeddings.

often, relevance models tend to work less effectively for collections built from web documents
such as ClueWeb12B [123].

Commercial search engines have a different angle when rewriting queries. A commercial
search engines processes a huge number of queries every day and these queries are a valuable
source to be leveraged. A popular approach is to generate new queries by linking queries through
the common documents clicked by users [43]. These new queries can form the candidates for
query suggestion or work as a surrogate of the original query. Mining query logs has been a
useful approach as we will shortly see that some generated queries can greatly improve retrieval
performance by replacing the original queries. However, our analysis also shows that automatic
generation techniques such as relevance models and query log based approaches still cannot
match human beings in formulating queries. So, we still need more powerful tools for generating
queries.

Recently, natural language queries have attracted more attention as techniques like voice
search and digital assistants become popular. Keyword queries have intrinsic limitations in ex-
pressing an information need due to the lack of language structure. They are obviously not suf-
ficient when complex phrases or sentences are needed to articulate the information needs. The



6 ¢  Chapter 1. Introduction

use of keyword queries is also not understood by users as an unnatural way of asking questions.
In contrast, natural language queries tend to be more precise and less ambiguous, but they also
pose fundamental challenges for search.

who was the us president when the red sox won the world series X

=
0

Q Al B News & Shopping [] Videos [&] Images i More Tools

President of the United States/Boston Red Sox/World Series championships

John F. Franklin D. Ronald George W.
Kennedy Roosevelt Reagan Bush

Donald Trump

https://en.wikipedia.org » wiki > Theo_Epstein v

Theo Epstein - Wikipedia

Theo Nathaniel Epstein (born December 29, 1973) is an American Major League Baseball ... In
2004, the Red Sox won their first World Series championship in 86 ...

Figure 1.3: Natural language queries are more specific in representing the information need but
are also more challenging for search engines to correctly understand.

How do retrieval models work for natural language queries? Until recently, our retrieval
methods do not work very well with natural language queries which contain many common
terms. In TREC! exercises, we see that short keyword title queries often outperform long natu-
ral description queries [77]. Figure 1.3 shows an example of a popular search engine failing to
understand the meaning of a natural language query. Even if a user can precisely dictate their
information need using natural languages, we are probably not in the position to fully take ad-
vantage of that in search.

Fortunately, recent progress in deep learning and natural language processing (NLP) has
improved our ability to process natural language. Deep neural networks with rich linguistic abil-
ities are widely adopted in various aspects of a search system. Over the last few years, using
deep learning retrieval models to maximize effectiveness has become an integral part of a search
engine. With these advances, we are also in a better position to explore more challenging tech-

IText REtrieval Conference (TREC) is an annual conference where researchers trial their ideas using standard
queries and document collections.



1.1

1.1. Organization

niques which was rarely explored before such as generating natural language queries, as existing
query optimization techniques are mainly driven by keyword queries. Natural language query
generation however can be a fundamental tool for extending the optimization ideas onto natural
language queries. It can be used for query rewriting, query expansion, query simulation, query
clarification, or conversational search.

Keyword queries are still the norm nowadays, but changes are happening. In this thesis,
we start with a traditional keyword query optimization technique — relevance modeling, and
identify the shortcomings of existing query generation techniques in Chapter 3. Then we explore
generating effective natural language queries in Chapter 4. Finally, we combine ranking and
query generation under one framework to maximize retrieval effectiveness in Chapter 5.

ORGANIZATION

The rest of the thesis are organized as follows.

Chapter 2. Chapter 2 introduces the context and technical background of this thesis. We will
first situate our work in the broader context of information retrieval research, and then develop
related techniques in the rest of the thesis, including retrieval models, neural networks particu-
larly sequence models, and reinforcement learning.

Chapter 3. Chapter 3 explores improving relevance modeling by incorporating field informa-
tion. In particular, traditional relevance models do not use field information which is pervasive
in web documents. We show that incorporating field information can improve retrieval effec-
tiveness. While relevance models are popular, the resulted queries are often long and uninter-
pretable, which motivates our study in new query generation techniques. More motivation is
provided through a comparative analysis identifying the performance gap between existing au-
tomatically generated queries and human written queries. The chapter focuses on the following
research question: How can we improve relevance models, and what gaps remain in existing
query generation techniques?
The content of the chapter appeared in the following publications:

+ Binsheng Liu, X. Lu, O. Kurland, and J. S. Culpepper. Improving Search Effectiveness with
Field-based Relevance Modeling. In Proc. ADCS, pages 1-4, 2018.

+ Binsheng Liu, N. Craswell, X. Lu, O. Kurland, and J. S. Culpepper. A Comparative Analysis
of Human and Automatic Query Variants. In Proc. ICTIR, pages 47-50, 2019.

Chapter 4. Chapter 4 explores generating effective queries that are readable. The NLP commu-
nity has a similar task called abstractive summarization which has an emphasis on readability.
The IR community has also explored generation queries but often only focuses on the effective-
ness of generated queries. We propose a novel query generation task which combines readability

+ 7
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and effectiveness, and study how to achieve the best trade-off of both objectives. This chapter
studies the following research question: How can we generate readable and effective queries?
The content of this chapter appeared in the following publications:

+ Binsheng Liu, X. Lu, and J. S. Culpepper. Strong Natural Language Query Generation. Inf
Retrieval J., 2021.

Chapter 5. Chapter 5 explores how to model ranking and query generation simultaneously.
The idea traces back to traditional discriminative retrieval models and generative retrieval mod-
els. Both approaches can surface strong relevance signals, so we combine them in a multi-task
learning framework. We implement the framework using transformers and show that retrieval
effectiveness can substantially benefit from a joint modeling approach. This chapter studies the
following research question: How can we jointly model ranking and query generation?

The content of the chapter appeared in the following publications:

+ Binsheng Liu, H. Zamani, X. Lu, and J. S. Culpepper. Generalizing Discriminative Retrieval
Models using Generative Tasks. In Proc. WWW, pages 3745-3756, 2021.

Chapter 6. Chapter 6 concludes the thesis, summarizes our contributions, and discusses open
questions and future work.



2 BACKGROUND

2.1

This thesis studies queries from multiple perspectives: optimizing queries, generating queries,
and using queries to enrich ranking models. Section 2.1 reviews information retrieval in general
including indexing, query representation, query optimization, ranking, and evaluation to provide
a general context for our work. Sec 2.2 and Sec 2.3 introduces traditional retrieval models and
neural ranking models which are the important underlying techniques for our work. They are
also widely used as baselines in literature and serve as theoretical basis of our work. Sec 2.4
introduces sequence models with an emphasis on Transformers which are the background of
Chapter 4 and Chapter 5. And finally, Section 2.5 introduces reinforcement learning which is
another supporting machine learning technique.

INFORMATION RETRIEVAL OVERVIEW

Generally speaking, information retrieval, as the name suggests, is mainly concerned with find-
ing information. Nowadays, it has become an infrastructure of our digital life. From general
information retrieval such as web search and library search, to more personalized retrieval such
as email search and desktop search, and then to domain-specific legal information search and
medical search, all the variety of tasks are supported by similar information retrieval techniques
with an emphasis on different aspects. In literature, information retrieval has been defined in
various wordings. Gerard Salton, in 1968, defined information retrieval as “a field concerned with
the structure, analysis, organization, storage, searching, and retrieval information” [179] which is
still valid for modern information retrieval after decades of development.

An information retrieval system consists of multiple components. Before it is able to process
user queries, it indexes a large collection of candidate documents to support efficient access to the
documents. We will briefly have a look at the basics of indexing and understand how queries are
matched and how vocabulary mismatches happen in practice. After the index is built, a search
begins with a user’s information need. The user then translates the information need to a query
which may or may not precisely represent the information need. In order to improve the quality
of the query, retrieval systems can provide query suggestions or fix misspells for the user during
the interactions. We would like the query to be as high quality as possible as it is the most
important information we can access to understand the information need. Then the query is



10 +  Chapter 2. Background

passed down to a retrieval model which retrieves and ranks documents for the query. A retrieval
model is at the core of a retrieval system as estimating relevance is even hard for human beings.
We have observed a lot of disagreements in the TREC’s relevance judging exercises where human
beings are asked to decide query-document relevance. So, researchers have put a lot of effort into
developing retrieval models in order to accurately estimate document relevance. The state-of-the-
art retrieval systems often use multiple retrieval models. Throughout the retrieval pipeline, the
models become more complex and resource-intensive and the pool of candidate documents also
become smaller. After the retrieval stage, the retrieved documents are presented to users through
a search engine results page (SERP).

We have put the main work of this thesis in the context of this workflow in Figure 2.1. The
figure is also tailored to highlight the emphasis revolving around queries which are the core of
this thesis. Chapter 3 studies query optimization and compares automatically generated queries
and human formulated queries; motivated by the findings that completely rewriting queries can
often lead to significant improvements, we focus our study on generating effective queries in
Chapter 4; finally, Chapter 5 further leverages query generation signals by incorporating query
generation into ranking to build a unified model.

Information Formulate Queries
Need Queries
Optimize

Optimized
Queries Queries
A
Collection

Rank
Gener.ate Results
O Chap 3 Queries
Chap 4 v

Figure 2.1: Information Retrieval overview.

2.1.1 INDEXING

A large collection of documents needs to be properly indexed so they can be efficiently retrieved.
Inverted indexes are the most commonly used indexing technique. Documents are parsed and
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organized by the terms they contain, and the index can be considered as a dictionary where
terms are the keys and document identifiers are the values. For example in Figure 2.2, doc 1
and 2 both contain the words “teenage”, “teen”, and “pregnancy”, so they appear in the list of
these three terms. Doc 4 contains “teen” and “pregnancy” so it only appears under these two
terms. This structure allows efficient keyword matching. When a query is being processed, we
can efficiently retrieve only documents that contain query terms and avoid examining the entire
collection. However, if the query is “teenage pregnancy”, doc 4, 5 and 6 which contains “teen”
will be missed.

Documents Content Term Documents
doc 1 teen pregnancy, ... teenage ...
doc 2 teen pregnancy, ... teenage ... teenage | —> [ doc 1| doc 2| doc3
doc 3 teenage ... :> teen —> | doc 1| doc2|doc4|doc5|docé6
doc4 |  teen pregnancy ... —> | doc 1| doc2|doc4|doc5
doc 5 teen pregnancy ...
doc 6 teen ...

Figure 2.2: Inverted indexes that support keyword-based retrieval.

Inverted indexes play an important role in retrieving efficiency. Given a query, documents
that do not contain any query term can be efficiently pruned and only a relatively small number
of documents need to be scored. Now, inverted indexes are mostly involved in the early stages
of a multi-stage retrieval system due to its efficiency.

QUERY OPTIMIZATION

For a search engine, a search begins with a user query. However, the query may not be optimal as
it can be easily misspelled or under-specify the user’s information needs. To improve the quality
of queries, Researchers have devised many techniques. We refer to techniques that try to improve
the quality of a query as query optimization techniques.

Query optimizations can happen at two places as shown in Figure 2.1. The first place is from
the original query where search engine can fix spelling mistakes and expand with synonyms
by leveraging lexicon or query logs. The second place happens in a retrieve-optimize loop. The
search engines optimize the query after retrieving some documents and use those retrieved doc-

11
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uments to further optimize the query. This second optimization can be explicit where the user is
asked to provide feedback or implicit where the search engine only uses the retrieved documents.

Spell Correction. Various studies show that 10% [48] to 20% [63] web queries contain spelling
errors. For example, a Google report ! also revealed that the query “britney spears” may be mis-
spelled as “brittany spears”, “brittney spears”, “britany spears”, and so on. Many mature algo-
rithms exist for spelling corrections. These misspelled queries need to be fixed before they are
used for retrieval. The most basic approach might be to compare out-of-vocabulary words with
existing words by edit distance and replace them with the words having the smallest distance.

More recently, neural language models (we will discuss in Sec 2.4.3) are used for spell correc-
tion. Hu et al. [83] cast spelling correction as a mask language modeling problem. A misspelled
word is masked out, and the language model is used to predict the missing word from the con-
text. On a slightly different task of grammar correction, Katsumata and Komachi [95] leveraged
the same idea but used an encoder-decoder model to recover the correct grammar.

Query Expansion. Query expansion aims at mitigating the mismatch between a query and
a document by adding words into a query. The expansion can be done semi-automatically or
automatically. Semi-automatic query expansion requires user interactions. We show an interface
of semi-automatic query expansion in Figure 2.3. When “information” is typed in the search
box, multiple expansion candidates are shown for the user to choose. The candidates can be
generated by matching the already typed text against millions of queries in a large query logs.
Automatic query expansion is often associated with pseudo-relevance feedback where a set of
initial retrieval documents are used. We also refer to the set of documents as pseudo-relevant
documents since they are assumed to be relevant in many query expansion techniques.

information X

information extraction
information extraction nip
information bottleneck

information

Figure 2.3: Semi-automatic query expansion from a commercial search engine.

Figure 2.4 shows a typical framework for automatic query expansion which is adopted by
several previous work. First, an initial set of documents are retrieved using a traditional retrieval
method such as BM25 or query likelihood. Second, some candidates are selected from the ini-
tial documents. The candidates for example can be individual terms, phrases, or fixed-windowed

Thttps://archive.google.com/jobs/britney.html
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chunks. The candidates are then scored using different methods. The scored candidates can be
used in multiple ways: top candidates can be added to the original query, all the candidates are
used as a weighted query, or terms are sampled based on a probability. Either traditional rele-
vance modeling [106], neural relevance modeling[137] or more complex neural network based
expansion [226] fall into this framework.

E doc 1 E

. E — —
E : candidate 1 candidate 2| 0.5

i i — 2
doc 10 E candidate 2> ca:(;i(:jr:tes —>»|candidate 3| 0.3

N — L — —
candidate 3 candidate 1| 0.1

—— —

doc 1000

- -

Top ranked documents Candidate pool Weighted candidates

Figure 2.4: A typical automatic query expansion framework based on pseudo-relevant feedback.

REPRESENTATIONS OF INFORMATION

The distinction between a query and the underlying information needs represented by the query
has been an essential component of Information Retrieval research for many years. Most IR re-
searchers follow TREC test collection paradigm of using one single query to represent an in-
formation need, while others argue that using multiple representations or queries is superior to
using a single query. In Table 2.1, we summarize the literature that exploits multiple represen-
tations of an information need. As the table suggests, in addition to query variations, there are
other sources that can be leveraged as additional evidence during the retrieval process. We cate-
gorize the literature into four groups in terms of the source of evidence they discuss: Q (Query)
means using multiple queries for an information need; D (Document) means using document
title, abstract, body, and so on when ranking the document; S (System) means using different
retrieval methods for the same retrieval task, e.g. query likelihood and BM25. Other than these
representations of an information need, Robertson [169] also suggest the relationship, or rele-
vance judgments, between queries and documents. Previous literature also has a different focus
on justifying the use of multiple representations which we can mainly classify into three per-
spectives: the query variability (QV), the impact on system performance (SP), and the support
from theoretical frameworks (TF). Respectively, some work follows the direction of query vari-
ability, and focus on how users formulate their information needs according to their cognitive
differences; studies on system performance focus on the effectiveness benefits of using multi-

13
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Table 2.1: Literature on information representations. Q: Query; D: Document; R: Relationship
between query and document; S: System. QV: Query Variability; SP: System Performance; TF:
Theoretical Framework.

Literature Year Source Perspective

Q D R S QV SP TF

The Probability Ranking Principle in IR [169] 1977 v vV v

An Evaluation of Factors Affecting Document 1979 V v v

Ranking by Information Retrieval Systems [126]

A Study of the Overlap Among Document Repre- 1983 v v v

sentations [96]

A Study of Information Seeking and Retrieving. IIl. 1988 v

Searchers, Searches, and Overlap [182]

Evaluation of an Inference Network-Based Re- 1991 v v

trieval Model [199]

The Effect of Multiple Query Representations on 1993 v

Information Retrieval System Performance [13]

Combination of Multiple Searches [186] 1994 v v

Combining the Evidence of Multiple Query Repre- 1995 v

sentations for Information Retrieval [14]

Analyses of Multiple Evidence Combination [108] 1997 v

Assessing the Cognitive Complexity of Informa- 2014 v

tion Needs [135]

User Variability and IR System Evaluation [8] 2015 v v

UQV100: A Test Collection with Query Variability 2016 v

[]

RMIT at the TREC CORE Track [19] 2018 V v v o/

ple representations for retrieval; and finally theoretical frameworks focus on categorizing our
understanding.

From a theoretical perspective, Robertson [169] provided a probabilistic framework which
supports using multiple sources of evidence to improve the retrieval accuracy. They incorpo-
rate multiple queries, documents, query-document relationships to improve the retrieval in their
framework. Turtle and Croft [199], using an inference network, justifies the use of multiple query
variations, and they also suggest integrating NLP techniques.

However, most researchers especially the early ones focus on finding the relationship be-
tween query variations and system performance. Following Robertson [169], McGill [126] dis-
cover that different techniques or queries find very different documents. Katzer et al. [96] observe
the same effect using multiple representations of documents. Furthermore, Belkin et al. [13] ar-
gued that an information need is so complex that any single representation is not sufficient, and
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multiple queries or techniques capture different aspects of the information need. Their experi-
ment shows that the performance improvement is positively correlated to the number of query
representations. Another reason why multiple representation should be preferred comes from
Lee [108]. Although there is some empirical evidence advocating the superiority of multiple rep-
resentations, Lee [108] was the first to find that different ranked lists contain similar relevant
documents but different non-relevant documents.

Before Shaw and Fox [186], the combination of multiple queries were usually performed be-
fore retrieval: multiple queries are first combined into a single query, for example using Boolean
operators. Shaw and Fox [186] propose CombSUM fusion method which combines the retrieval
lists of each query variation. The method adds up different scores from retrieval lists and works
better than choosing any single score. There are also two variations of this method, CombMNZ
and CombANZ [14]. The former multiplies the aggregated score with the number of lists in which
the document appears, while the latter divides the score by the number. Vogt and Cottrell [202]
extended the CombSUM method by assigning weights to retrieval lists.

Regarding human cognition, it’s not surprising that query variability is strongly related to
human cognitive skills. To date, most query variations are collected from human and referred to
as user query variations. Saracevic and Kantor [182] studies multiple representations of an infor-
mation need from a user perspective. Their results show that query variability may come from the
difference in searchers’ language skills and abstract thinking abilities. Bailey et al. [8] conducted
an experiment in which TREC topics were categorized into Remember, Understand, and Anal-
yse, according to their cognitive complexity. They then asked annotators to decide which topic
belongs to which category. They find the Remember category has the highest agreement while
there is not a clear boundary between Understand and Analyse. Following this, Bailey et al. [9]
collected query variations for each topic from the TREC 2013 and 2014 Web Tracks. They wrote
backstories for the 100 topics and collected variations through crowdsourcing systems. Crowd
workers saw the backstories and wrote queries based on their understanding to the backstories.
Using a similar approach, Benham et al. [19] collected variations for 250 topics of Robust04. In
contrast to Bailey et al. [9], the people who created Robust04 variants are IR domain experts, and
thus it’s not surprising these variants have better quality than ClueWeb12B.

Although user query variations improve retrieval performance, they can’t be easily deployed
in a production system as they require human curation. Thus, automatic query generation is of
special interest, but surprisingly there is little prior work on this topic. Sheldon et al. [187] pro-
posed a process to induce multiple query variations from a starting query or description using the
random walk model originally described by Craswell and Szummer [43]. Benham et al. [18] use
a sampling based technique to automate the process of generating query variations. They induce
relevance models using the title query, and sample query terms from the relevance models sev-
eral times. These are the only prior work to report performance improvement with automatically
generated queries, but to date, it is still unclear how the automatic query variations compare to
user query variations and how we can generate effective queries.

15
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2.1.4 MULTI-STAGE RETRIEVAL

3 top 1000 top 50
d3 documents documents
4> d8 dé6
w BM25 —>| ... | P> monol5 —> >
d42
S

Figure 2.5: Multi-stage retrieval from Pradeep et al. [161]. The early precision of the ranking is
improved after each stage as the computations get more and more expensive towards the end of
the pipeline.

Modern search systems often consist of multiple stages of ranking to balance efficiency and
effectiveness of different retrieval models. Such systems are also referred to as cascading systems.
In the early stages of a cascade system, fast retrieval methods are often used to select some candi-
date documents from the entire collection. In the following stages, the candidates will be further
reranked by more complex learning-to-rank or neural ranking models. As the ranking algorithms
become more expensive, the candidate pool is gradually reduced to balance efficiency and effec-
tiveness cost. Figure 2.5 illustrates a multi-stage ranking architecture proposed by Pradeep et al.
[161]. In the first stage, they used BM25 to retrieve 1000 documents. In the second stage, they
used a pointwise neural ranking model monoT5 to rank the 1000 documents. In the third stage,
the top 50 documents from the second stage are grouped into pairs and fed into a more complex
ranking model called duoT5. Each stage has a different focus in the pipeline. The early stages
often focus on efficiency and high-recall which means to include as many relevant documents
in the candidate pool as possible. The later stages often aim for high-precision as they are finely
ranking the top documents.

The models used in different stages are often trained independently which may result in
sub-optimal outcome. Gallagher et al. [70] have studied jointly training multiple ranking mod-
els by incorporating feature extraction cost into training, to achieve the best trade-off between
efficiency and effectiveness albeit with a feature-based model and Gradient Boosted Regression
Trees.
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2.1.5 EVALUATION OF RETRIEVAL

Evaluation is another well-studied area in IR. We evaluate our work in this thesis on reusable
test collections with offline evaluation metrics. A test collection is composed with documents,
queries and relevance judgments for query-document pairs. A list of documents returned by a
retrieval system can be evaluated according to the judgments and the quality can be measured
with various metrics. In this section we list the collections and metrics we used.

Datasets. Many test collections are released by Text REtrieval Conference (TREC) of National
Institute of Standards and Technology?. Specifically, we use the following test collections:

+ TREC Robust04 [204]: A test collection with about 528 thousand documents and 250 topics
released in 2004.

+ TREC ClueWeb09B [36]: A test collection of about 50 million documents and 200 topics
released in 2009.

+ TREC ClueWeb12B [37]: A test collection of about 52 million documents and 100 topics
released in 2012.

+ MS-MARCO [143]: A test collection of about 8 million documents and more than 500 thou-
sand topics. Most topics contain only one “relevant” judgment.

+ CASsT 2019 [54]: The document collection is built by concatenating MS-MARCO and TREC
CAR [60]. There are 173 queries in this test collection.

We will discuss collection details when they are first used in the thesis.

Evaluation Metrics. Retrieval systems return a list of documents. Given the relevant docu-
ments R, we can represent the retrieval list as a relevance list. Let

L={rie{01}|i=12...,d}

denote such a list where r; = 0 indicates the ith document is non-relevant or not judged, and
r; = 1 indicates the ith document is relevant. A metric is defined over such a list. More generally,
the metric can be defined at a cutoff k where only the first k documents are considered.

The first metric we consider is precision. It measures how many relevant documents are
retrieved among all the retrieved documents.

Z? i
k

Precision@k = (2.1)

P@k is commonly used an abbreviation for Precision@k. A problem of precision is when k > |R|
it never reaches 1.0. So a relatively small k such as k = 10 is more reliable in practice [134].

Zhttps://trec.nist.gov
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Recall is defined as a ratio of retrieved relevant documents over all relevant documents. It is
particularly useful in a cascade retrieval system where early stages aim for high recall.

k
Zi ri

Recall@k =
IR

(2.2)

Reciprocal rank cares only about the first retrieved relevant document. It is defined as the
reciprocal of that document’s rank position:

1
RR@k ==, i=min({i=12, ... klr; >0}) (2.3)

i
where i is the rank position of the first relevant document. The average reciprocal rank of a
set of queries is called mean reciprocal rank (MRR). MRR may be more suitable when relevance
judgments are shallow. For example, MS-MARCO has only 1 judgments for most documents and

MRR is used as the official metric for their leaderboard. However, it is also considered unstable
as a high RR query can compensate many low RR queries [134].

Average precision (AP) combines recall and precision and is defined as:

k
1 .
AP@k = F Z r; - P@i (2.4)

The average of this value over a set of queries is called mean average precision (MAP).

Discounted cumulative gain (DCG) is defined over graded judgments. Thatis,r; € {0,1,2,...}
is not limited to binary values. DCG awards more penalties to ranking relevant documents at a
lower position, so the gain of a relevant document is discounted as its rank position gets lower.

k
Ti
DCG@k = Z R (2.5)

DCG is often normalized in order to be compared among queries. The normalization factor is the
DCG score of a perfectly ranked list, denoted as IDCG

DCG@k
ND =" 2.6
cC@k IDCG@k 26)

so that NDCG is bounded by 0 and 1.

Rank biased precision (RBP) is based on the assumption that, after examining some docu-
ments, there is a probability p that the user will continue inspecting the rest of the documents.
Patient users have a high p while impatient users have a low p. It is formulated as:

k
RBP@k = (1-p)- ) i p'™ (2.7)
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2.2 TRADITIONAL RANKING MODELS

Judging relevance is a cognitive process which involves in understanding complex languages.
Throughout the development of information retrieval, researchers have proposed many retrieval
models hoping to accurately represent information and estimate the relevance to users’ needs.

Strictly speaking, retrieval and ranking are different. The former refers to retrieving a set of
documents without ordering, whereas the latter means ordering the documents according to the
relevance to the query. One of the earliest retrieval models, binary retrieval, is not able to rank
documents but only to fetch documents according to the presence of query terms. Other than
that, most retrieval models are able to produce a relevance score based on similarity measures
or probabilities and thus can rank documents. In this thesis we make no distinctions between
retrieval and ranking and use them interchangeably.

A ranking model can be described as estimating a relevance score given a document D and

a query Q:
Score(Q, D)

One type of retrieval model estimates the score using the similarity between the query represen-
tation and the document representation:

Score(Q, D) = Similarity(Q, D)

Another type is based on the probability of a document being relevant to a query. A binary
variable R is used to denote relevance. It has two values: 1 or 0 (in literature the notation r and 7
are also used). Then documents can be ranked according to such a probability:

Score(Q,D) = P(R=1|Q,D) (2.8)

This type of retrieval model is also called a probabilistic model. The theoretical foundation is jus-
tified by the Probability Ranking Principle (PRP) [168] which formally describes the retrieval and
ranking task as estimating the probability P(R = 1|Q, D). The principle lays the high-level foun-
dation for developing retrieval models using probability theory but does not specify a method
for estimating the probability.

Some models assume that query terms are independent to each other and adopt a simpler
way to estimate the relevance score:

Score(Q,D) = Z Score(q, D)
q€Q

With this assumption, many term-level scores can be pre-computed and cached with the inverted
index for better efficiency.
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2.2.1 BOOLEAN RETRIEVAL

2.2.2

The Boolean retrieval model was one of the earliest retrieval models. It retrieves documents based
on the presence of query terms in that document. All the query terms are combined using AND,
OR, and NOT logic operators. Documents satisfy all the logic conditions are finally retrieved.
Using “teen” and “pregnancy” as an example, the query teen AND pregnancy will retrieve doc 1,
doc 2 and doc 4 which contain both terms. The query teen OR pregnancy will retrieve doc 1, doc
2, doc 4, doc 5, and doc 6 which contain either query term. The process is illustrated in Figure 2.6.

Term Documents

)
teenage | —> doc 1| doc 2 | doc 3

.

doc 1| doc2 | doc4 | doc5 | docé

— |

! i teen AND
:‘ teen AND pregnancy| (NOT pregnancy)

pregnancy| —> E doc 1| doc 2 | doc 4 |

Figure 2.6: Boolean retrieval. “teen AND pregnancy” retrieves doc 1, doc 2, and doc 4. “teen OR
pregnancy” retrieves doc 1, doc 2, doc 4, doc 5, and doc 6.

The Boolean model is a perfect example of leveraging the inverted index to quickly prune
unmatched documents. However, the shortcomings are also clear. The use of logic operators
imposes extra burden on users as they need to try multiple possibilities of combining the terms.
When the number of terms become large, formulating a reasonable query becomes challenging.
This is probably also why the application is limited to fields like medical search [94] where the
users are usually domain experts. Another shortcoming is that it does not rank documents. When
many documents satisfy the query condition, all the documents are considered equally relevant
and returned to the user.

TF-IDF

The TF-IDF score is a numerical statistic for measuring word importance. It is widely applied
in information retrieval (e.g. the vector space model and BM25 which are discussed later), key-
word extraction [110], topic modeling (e.g. the latent dirichlet allocation [24]), recommender
systems [11] and so forth.

The score is a combination of two components. The TF part stands for term frequency which
describes how frequent a term appears in a document. Intuitively, if a term occurs frequently in a
document, it may be an indication of high importance. The IDF part stands for inverse document
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frequency which describes how discriminative a term is. If a term appears in too many docu-
ments, this term is not helpful in distinguishing documents. For example, “the”, “a”, and “an”
almost appear in every document, but they are not informative. Hence, the inverse of document
frequency is used to favor rare words.

The exact values of TF and IDF can be computed in various ways. The simplest form might

be:
TFIDF(D,t) = TF(D,t) - IDF(t)

f
THb.0 = theDDﬁf,D (2:9)

N
IDF(t) = log —
n;

where f; p is the number of occurrences of term ¢ in document D, N is the total number of
documents in the collection, and n; is the number of documents containing term ¢.

Many variations have been proposed based on different motivations. The raw term frequency
count can be directly used: TF(D, t) = f; p. However, as the number of occurrences increases, the
increase in importance might become marginal, so the raw frequency count can be discounted:
TF(D,t) = log(fip + 1). For IDF, to facilitate the calculation of out-of-vocabulary terms, the n;
value is often smoothed: IDF(t) = log nf\il.

Despite these slightly different forms, the property of TF-IDF has been consistent. Hereafter,

we will refer to TF-IDF as a general concept unless otherwise discussed.
To rank documents, the TF-IDF score of each query term can be aggregated [125]:

Scorerripr = Z TFIDF(D, q) (2.10)
q€Q

2.2.3 VECTOR SPACE MODEL

The vector space model (VSM) [181] converts queries and documents into a latent vector space
and ranks documents based on the similarity between the query vector representation and the
document vector representation. This is also a general paradigm followed in other work which
use various methods to yield the representations. For example, Huang et al. [85] used a deep
neural network to learn the vector representations of queries and documents and then ranked
documents by their cosine similarity to the query.

In VSM, the vector space is v-dimensional where v is the size of the entire vocabulary. So,
regardless of the length of a query or a document, their vector representations have the same
shape as shown in Figure 2.7. The feature values g; and d; can have many forms:

+ Binary — 1 if the term is present and 0 otherwise.
+ Raw count — the number of occurrences of that the term appears.

+ TF-IDF— the TF-IDF score of the term.



22 % Chapter 2. Background
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Figure 2.7: The vector representations of a query and a document. They both have the same
number of elements v which is the number of terms in the vocabulary. When the v is large, the
vectors are very sparse where most elements are zero.

Given the vector representations, documents can be ranked according to the similarity to the

query:
Scoreysy(Q, D) = cosine(Q, D)
__9D
1Ol - [ID] (2.11)
_ Z? qi - di
VEIig -2l
2.2.4 BM25

Robertson et al. [173] proposed BM25 which empirically combines term frequency and inverse
document frequency. In the original paper, the scoring function is defined as:

TFpmas(D, t)

Scorepps(Q, D) = - IDFppa5(t)
te;D K + TFmas(D, t)
l
K=k(1-B+B--2)
avg (2.12)
D
TFpmas(D,t) = ﬁ—
Zt/eD t',D
N - ny; +0.5
IDF 1) =1 _
Bm2s (1) = log( n+05 )

where fp; is the frequency of occurrences of ¢t within D, Ip is the length of document D, I is
the average document length of the entire collection, N is the total number of documents, and n;
is the number of documents containing ¢. k; and B are two hyperparameters which are collection
specific.

Since BM25 is effective while still being efficient, it is now often used to retrieve an initial set
of candidate documents for more expensive neural ranking models in later stages. The field-based
variation BM25F [221] is also popular for collections with field information.
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2.2.5 QUERY LIKELIHOOD

Query likelihood [160] is a probabilistic ranking model based on language models. A language
model describes the probability a word w is generated. In a document about “information re-
trieval”, the words “information” and “retrieval” are likely to appear very frequently, so they are
expected to have high probabilities of being used. The probability distribution of the entire vo-
cabulary is called the language model. In fact, a language model describes the word preference
of a piece of text. When a user writes a query, they may have a set of candidate words for the
hidden information need. When an author writes an article, they also have a vocabulary for the
topic of the article. So, a language model can be induced from various text source — a query, a
document, or a collection.

The simplest way of inducing a language model is to use word frequencies, i.e. frequent
words will have higher probabilities than less frequent ones. Given a document D, the document
language model is defined as:

fw,D
Zw’eDfW’,D
_ Jwp
D]

P(w|D) =
(2.13)

With a document language model, we are able to estimate the probability of a query Q being
generated from the language model assuming that query terms are independent of each other:

PQID) = [ | P(qID)
q€Q

This probability is the query likelihood and can be used to rank documents. In practice, a rank-
equivalent form is used in order to improve the numerical stability:

Scorepr (Q, D) =log P(Q|D)

= logP(q|D) (2.14)
qeQ

A document language model estimated from Eq 2.13 is subject to the sparsity of the document.
Compared to the vocabulary, the number of unique terms in a document is rather small, which
means most words have a probability of zero. Intuitively, this language model induced solely from
the document may not be an accurate language model. Although other words happen to have
not occurred in the document, they should have a small probability but not zero. To alleviate the
problem, a collection language model is often used to smooth the probability. Given a collection of
documents C, the collection language model P(w|C) is induced by counting the term frequencies
in the entire collection, so it provides a default probability for every word in the collection. The
smoothed language model is modified as:

P'(w|D) = (1 — a)P(w|D) + aP(w|C) (2.15)
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where « is a smoothing coefficient which can be a constant or document dependent. When «
is constant, the smoothing is known as Jelinek-Mercer smoothing. According to [224], Felinek-
Mercer smoothing tends to perform better for long queries. The well-known Dirichlet smoothing
defines a = ﬁ with p being a hyperparameter. The contribution of P(w|D) is then propor-
tional to the document length |D|. The longer the document is, the more data it provides to
estimate the language model and hence the more accurate the estimation is. It is observed that
Dirichlet smoothing performs better for short queries [224]. The final Dirichlet-smoothed docu-
ment language model is:

P'(w|D) = (1 — a|D)P(w|D) + aP(w|C)
- (1 H )fw,D " £ fwe

~IDI+x” DI T D[+ |C| (2.16)

_ fun gt

|D| + p

Substituting this definition for Eq 2.14 results in the final equation of query likelihood ranking.

Theoretical Formulation. The lack of an explicit relevance variable in deriving the query like-
lihood model has been questioned by researchers at its emergence. From a probability theory
perspective, we would like to use P(R = 1|Q, D) (recall Eq 2.8 which is based on the Probabil-
ity Ranking Principle) to rank documents, but it is unclear how this probability is connected to
Eq 2.14. Lafferty and Zhai [105] completed this theoretical connection and derived Eq 2.14 in a
probabilistic framework. Applying the Bayes’ rule multiple times, the probability of relevance
P(R|D, Q) is factored as follows:

Scorepr(Q,D) =P(R=1|D,Q)

< 1og PR=1ID,0)

& P(R=0D,0) (2.17)
. P(QID,R=1) P(R=1|D)
=log 5 bi0.R=0) T8 BR=0D)

Now we further factor the two components respectively.

Assuming D and Q are independent on event R = 0, in other words, assuming D and Q are
independent if they are non-relevant:

P(QID,R=1) - log P(QID,R=1)
P(D|Q,R =0) P(QIR =0)
« log P(QID,R = 1)

log
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Additionally, assuming D and R are independent, the last component becomes a constant and
can be ignored:
P(R =1|D) P(R=1)
= log
P(R =0|D) P(R=0)

Substituting these items for the components in Eq 2.17, we get
Scorepr(Q,D) o« log P(Q|D,R = 1) (2.18)

which links back to Eq 2.14 as introduced in Lafferty and Zhai [105].

Language modeling is a core foundation of this thesis. The language models we discussed
here can be referred to as statistical language models, in order to distinguish them from the more
recent neural language models. Statistical language modeling is the seminal work of Chapter 3
and neural language modeling is a key component of Chapter 5. We will discuss neural language
models in Sec 2.4.3 where we introduce Transformers.

SEQUENTIAL DEPENDENCE MODEL

Word dependencies are crucial for understanding a piece of text. Using “information retrieval”
as an example, the probability that “retrieval” occurs after “information” is probably higher than
when it appears without a context. However, many retrieval models disregard this information
for simplicity — words are assumed to be independent to each other. To capture this key informa-
tion, Metzler and Croft [127] proposed a general framework which incorporates term dependen-
cies. This framework can be considered as a generalization of three language models: unigram
language models [160], bigram language models [190], and finally biterm language models [192].

Table 2.2: Language models for an ordered sequence of m words wiwyws...wp,.

Type Definition

Unigram P,y (wiwows...wp,|D) = P(w;|D)P(wy|D)P(ws|D)...P(wy,|D)

Bigram  Ppg(wiwaws..wi|D) = P(w1|D)P(wz|w1|D)P(ws|wa, D)...P(Wn|Wp—1, D)
Trigram  Pyg(wiwows...wp|D) = P(w1|D)P(wa|wi|D)P(ws3|wiwa, D)...P(Wp |Wm—2Wp—1, D)
n-gram  Ppg(wiwows..wp|D) = [1;" P(Wi|Wi_(n-1)...Wi_1, D)

The unigram and bigram language models are two instances of the general n-gram language
model which conditions a word on n-1 previous words. We summarize their definitions in Ta-
ble 2.2. The estimation of P(w;|w;_(p-1)...wi—1, D) is estimated from n-gram frequency count and
is a generalization of Eq 2.13:

fWi—(n—l) e Wim1wi, D

P(wilwi_(n-1)...wi-1, D) = 7 >
Wi-(n-1)---Wi-1,

+ 25
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2.3

231

Note that smoothing techniques can be incorporated into the estimation same as Eq 2.15. We
omit the smoothing part for simplicity.

The biterm language model is slightly different to a bigram language model in that it relaxes
the term ordering constraint. So the biterm probability can be estimated as from the bigram
probability of the swapped words :

1 1
Py (wi—yw;|D) = EPbg(Wi—lwilD) + prg(wiwi—llD)
The sequential dependence model (SDM) now can be formally defined:

Scorespm(Q,D) = > Ay log Pug(qi|D)+
qi€Q

Z Ac log Ppg(qiqis1|D)+ (2.19)
qiqi+1€Q

Z At log Py (qiqis11D)
qiqi+1€Q

where Ay, Ag and Ar are three hyperparameters.

NEURAL RANKING MODELS

NEURAL NETWORKS FOR RANKING

Neural networks have achieved breakthrough progress in computer vision (e.g. Krizhevsky et al.
[103] for image recognition) and natural language processing (e.g. Bahdanau et al. [6] for ma-
chine translation) in the past few years. We have also witnessed exciting improvements in IR by
applying neural networks to ranking. In 2019, TREC Deep Learning Track has seen that the best
neural network model outperforms the best traditional model by a huge margin of 37.4% [44]. In
2020, the gap was increased to 42% [45]. The significant progress can not be contributed by any
single technique. From the literature, we can see that the progress in ranking has gone through
three stages, each of which has contributed a key technique to get us to where we are today:

+ Learning-to-rank
+ Deep neural ranking models
+ Transformer ranking models

The first stage is learning-to-rank which applies machine learning in ranking. At this stage,
the commonly used loss paradigms — pointwise, pairwise and listwise — were developed. Nowa-
days, these loss functions still play a fundamental role in training neural ranking models. Some
early learning-to-rank work has also explored using neural networks [27]. A property of tech-
niques from this stage is the use of manually designed features. Gallagher et al. [71] released a
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feature extraction framework fxt which has 448 available features. However, the feature-based
models is also limited by feature engineering.

The second stage is applying deep neural networks. This stage has a focus on the design of
network architectures. Although deep neural ranking models can be considered as a learning-
to-rank technique in a broad sense, one major advantage that separates neural ranking models
from classic learning-to-rank models is the ability to learn from raw text without having to de-
sign features manually. In the beginning of the stage, the focus was mainly on representation
learning than the design of ranking functions. Queries and documents are projected into a latent
space individually and the relevance was measured using similarity metrics, which was similar
to the vector space model (Sec 2.2.3). Later, neural networks were incorporated in an end-to-end
ranking architecture where the ranking function is also implemented using neural networks.
Guo et al. [76], Mitra and Craswell [131] comprehensively summarized work at this time period.
The application of deep neural ranking models was an attempt to transfer the success in NLP to
IR. However, more noticeable improvements were not observed until recently.

The third stage was marked by the emergence of the Transformer [201] and neural language
models (more specifically BERT [57]). Transformers are a breakthrough in the design of network
architectures for language related tasks, using an attention mechanism [6]. Transformers have
remarkably improved the efficiency of the attention mechanism through self-attention variants
which we will introduce in detail in Sec 2.4.1. Later, Devlin et al. [57] used language modeling
tasks to initialize the transformer parameters with generalized language knowledge. Their pre-
trained model turned out to be easily transferable to many text related tasks including ranking.
Nogueira and Cho [145] was perhaps the first to successfully use BERT for ranking. Since their
work, Transformers-based ranking models have dominated in IR.

In the rest of this subsection, we provide a high-level overview of neural ranking architectures
and elementary learning techniques.

2.3.2 NEURAL RANKING FRAMEWORK

A neural ranking model M produces a relevance score given a query Q and a document D. The
framework is illustrated in Figure 2.8 and can be formally described using the following formula
as abstracted by Guo et al. [76]:

Scoreneural(Qa D) = M(Q’ D)

(2.20)
=g(¥(Q), ¢(D),n(Q. D))

where g computes the score based on input features, 1, ¢ and n are representation learning
functions for the query, document, query-document pair respectively.

More specifically, for learning-to-rank models, i and ¢ extract static features such as number
of terms and average term length; 7 is an interaction function which extract features such as the
BM25 scores of the query-document pair. We list several example features in Table 2.3.
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Figure 2.8: A highly abstractive generalized framework of neural ranking models.

For neural ranking models, according to Guo et al. [76], there are two types of models based
on the underlying assumptions on relevance.

+ Representation-focused models are illustrated in Figure 2.9a. They have the assumption
that relevance is determined by the inherent meaning of the text. These models learn the
representations of queries and documents separately and use simple metrics to measure the
similarity of the representations. The representation functions i and ¢ are neural networks
which project text into a latent space while 7 is not used.

+ Interaction-focused models are illustrated in Figure 2.9b. They assume that relevance is
more about the relation between queries and documents. So, queries and documents should
not be processed separately. There are many ways of capturing the interaction between a
query and a document. For example, they can be concatenated together and fed into a
ranking model as one sequence. In this case, i/ and ¢ are not used while 5 yields a joint
representation.

Many details are also hidden in the design of the networks i/, ¢,  and g. A few popular choices
are feed-forward networks [183], convolutional networks [68], recurrent networks [81, 176], and
Transformers.

2.3.3 Loss FUNCTIONS

A loss function is a crucial part of a neural ranking model. It measures how well a model’s pre-
dictions reflect ground truth labels and provides directions for optimizing the model. According
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Table 2.3: Examples of neural ranking features. IDF is defined in Eq 2.9; Scorerpipr is defined
in Eq 2.10; Scorepzs is defined in Eq 2.12; Scoregy, is defined in Eq 2.14. |X| denotes the number
of terms contained in X; PageRank is a measure of importance of web pages [154]; fyp is the
number of occurrences of g in D.

Name Definition
Query length ¥(Q) = 10|
uery feature

Query Mean IDF ¥(Q) = B Zgeo IDF(q)
Document length ¢(D) = |D|

Document feature Page rank ¢ (D) = PageRank(D)
TF n(Q, D) = 2geo fon
TF-IDF n(Q, D) = Scorerripr(Q, D)

Query dependent feature BM25 n(Q, D) = Scorepmzs(Q, D)

Query likelihood score  7(Q, D) = Scorepr(Q, D)

to Liu [119], there are three types of loss functions that are most commonly used for training a
ranking model: pointwise, pairwise, and listwise losses, which use a single, a pair and a list of doc-
ument scores to calculate the loss respectively. It is worth noting that the terminology does not
refer to network architectures. The only requirement on a network is to produce a real-valued
score given a query and a document. Loss functions discussed here are orthogonal to and can
be applied to any network architectures described by Eq 2.20. For pointwise losses, we apply the
network on one query-document pair to get one score and calculate a loss between the score and
the ground truth; for pairwise losses, we apply the network twice on two query-document pairs
to get two scores and calculate a loss based on the rank determined by the scores; for listwise
losses, we apply the network multiple times to get a list of scores and calculate a loss based on the
list of scores. In the literature, the term “pairwise” might be used in another way. For example,
Nogueira et al. [147] proposed a “pairwise” ranking model which takes one query and a pair of
documents and predicts if the document order is correct.

We use similar notation to the machine learning literature to describe loss functions. The
model M takes as input x which can be a feature vector, as in learning-to-rank or a piece of raw
text, as in more recent deep neural ranking models. The relevance judgment for x is denoted as
y, which can be binary (0 for non-relevant and 1 for relevant) or graded (for example, Clarke
et al. [36] used 0 for “not relevant”, 1 for “not relevant, but reasonable”, 2 for “relevant”, and 3
for “highly relevant”). The only constraint on the model is that the output should be a real value
which we denote as 7. For simplicity, we also assume that § ranges from 0 to 1:

§=M(Q,D) € [0,1]
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(a) Neural ranking with a focus on representa- (b) Neural ranking with a focus on query-
tion learning. document interactions.

Figure 2.9: Instance of the neural ranking models with different focuses. The left panel has a
focus on representation learning. The right panel has a focus on the query-document interaction
and the ranking function.

although some losses do not have this constraint. One approach to convert an unbounded real
value v is applying a sigmoid function o

1
1+e7?

o(v) =

(2.21)

We express specific loss functions using the notation of § and y. To simplify the notation,
we only define a loss using a single training instance. Our definitions can be easily extended to
batched training by averaging or weighted-averaging the losses in the batch.

Pointwise Loss. Pointwise losses are a direct application of regression and binary classification
inIR. If we view ranking as a regression problem where the model outputs a real-valued relevance
score, then the loss can be a mean squared error (MSE) loss:

Luse(y.9) = (§ — y)? (2.22)

Ranking can also be viewed as a binary classification problem where the model is predicting
whether a document belongs to the relevant class or non-relevant class. This formulation fits
perfectly for training data with binary judgments while graded judgments need to be mapped to
binary according to some rules. Most commonly, non-zero judgments are mapped to 1. The loss
is a binary cross entropy (BCE) loss:

Lpce(y, §) = —(ylog§ + (1 - y) log P(1 - 7)) (2.23)
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Pointwise losses are a natural extension of classic machine learning approaches which were
devised decades ago. It may suffer from imbalanced data, as commonly observed in machine
learning. Or even worse, in an IR setting, most documents belong to the non-relevant class. In
such a case, down-sampling the non-relevant class is often required. In addition, the intrinsic
problem of ranking is the order of documents instead of the classification or the scores. Is a
document with a relevance score of 4 two times more relevant than a score of 2? It is hard to say
as relevance is subjective. With pointwise approaches, ordering can not be easily incorporated
during training which often leads to sub-optimal models. Moreover, the BCE loss (Eq 2.23) needs
a binary label and this is often done by mapping non-zero graded judgments to 1 which has
completely discarded the orders within those judgments. To address the problem, pairwise and
listwise losses were proposed to directly model orders for ranking.

Pairwise Loss. Pairwise loss has an emphasis on the rank of a pair of documents instead of their
exact labels. Given two inputs x; and x;, with the labels y; > y5, the objective is also predicting
the relevance score so that §j; > ;. One of the most popular pairwise losses is hinge loss:

LHinge (41, §2) = max (0,1 = (g1 — J2)) (2.24)

Note that the original labels y; and y, are not used, and only the order of the predictions matters.

lossis = maz(0,1 — (§; — ¥5))
= maz(0,1 - (1-1))

=1
label prediction
n=2 [g,=1 lossyz = maz(0,1 — (g5 — J3))
ys =1 9y =1 = max(0,1 — (1 —0))
y3 =0 g3 =0 =0

loss13 = maz(0,1 — (4, — §3))
= maz(0,1 — (1 —0))
=0

Figure 2.10: An example of hinge loss.

Another popular pairwise loss is the RankNet loss [26], shown in Eq 2.25. Since it uses a
logistic function to map model outputs to probabilities, it is also referred to as the pairwise logistic
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loss.
LRankNet(gly QZ) = —IOgP(Ql > QZ)
1 (2.25)

1+ exp(3i — 7J2)
where 7; > iJ; denotes that 7j; is ranked higher than g,.

P(1>92) =

Although pairwise loss takes only a pair of instances to calculate the loss, it can be easily seen
that it works well for a list of instances as well, if we turn a list into multiple pairs. Figure 2.10
shows an example of how hinge loss work in a listwise setting. For the three instances, we can
construct three pairs. For the pair (¢, §3) and (g3, §3), the current scores can order them correctly,
so the corresponding losses losszs and loss;3 are 0. The only problematic ordering is between
and 7, given the current scores. With loss;; = 1, the model is tuned to assign a higher score to
1J; to minimize the overall loss and that will lead to the correct ordering of the entire list.

The pairwise approach may also be subject to imbalanced data as was the pointwise approach.
While relevant-non-relevant ratio is always 1 : 1 in a pairwise setting, the imbalance can still
be caused by relevance judgments at the query level and be amplified due to the construction of
pairs. A query with more relevance judgments tends to have significantly more pairs [162]. For
example, if a query has 5 relevant documents at different levels, we can construct 10 (5x4/2 = 10)
valid pairs. If a different query has 20 judgments at different levels, the number of pairs becomes
190 (29X 19/2 = 190) which is 18 times more than the previous query. In such a case, the training
is dominated by queries with a large number of relevant documents. To alleviate the query-level
imbalance, query-level normalization needs to be considered, where the loss contribution from
a query is divided by the number of pairs for that query.

Pairwise losses consider every pair equally important. This is not true for many IR metrics
which have more penalties at top positions such as NDCG and MAP. Ideally, mixing up posi-
tion 1 with position 100 should result in a larger loss compared to mixing up position 50 with
position 100, but it is not taken into consideration in a pairwise setting. To tackle these issues,
researchers have studied listwise losses which can use equal amount of documents of a query
and are sensitive to rank position.

Listwise Loss. A listwise loss also has an emphasis on the rank of documents instead of their
exact labels. But listwise losses are able to rank a list of documents instead of just a pair. Ideally,
both pairwise and listwise losses produce the optimal ranking when minimized. The listwise
approach directly incorporate the rank of a list of documents whereas the pairwise approach
indirectly. In a listwise setting, a list of inputs X = {x, x, ... } are sorted according to the labels
Y={y,ys ...} wherey; >y, > ....

The ListMLE [213] loss aims at maximizing the probability of selecting each document from
the ranked list Y = {y;,ys, ... }. Consider the following process: for {y,ys, ... }, where y; has
the highest probability of being selected; for the rest {y,, ...}, y2 has the highest probability of
being selected; this process continues until every document is selected. Xia et al. [213] show that
by maximizing the product of every probability, the optimal ranking is achieved. Equivalently,
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the loss is defined to minimize the negative sum of the probabilities:

Lrisemre(Y,Y) = — Z log P(4:)

exp (i) (2.26)

PO = 5 exp(@))

The key to this loss is the estimation of the probability of selecting the i;;, document P(7;).
Figure 2.11 shows two examples of the calculation which differ at the prediction of ;. With
71 = 1, the overall probability is 0.309. With 7j; = 2, the overall probability is 0.486. When the
loss is minimized, the probability is maximized, and the model is able to produce an optimal rank.

label prediction P, — ezp(1) — 0.423
T U+ eaplD) + eap0)
Y1 = yl =1 emp(l)
=1 g, =1 P, = =0.731
= i " eap(1) + eap(0)
y3 =0 93 =0
exp(0)
P = =1
ezp(0)
P -P,-P; =0.309
label prediction P, = ezp(2) — 0.665
/ "7 exp(2) + exp(1) + exp(0)
o h=2 ezp(1)
= J, =1 P, = =0.731
= - * " eap(1) + eap(0)
Ys = g3 =0
p, (0 _
s exp(0)

P, - P, -P; =0.486

Figure 2.11: An example of ListMLE loss. The bottom prediction is superior to the top prediction
as documents can be ranked correctly.

Cao et al. [30] proposed ListNet which measures the cross entropy between two top-one
probability distributions estimated from the ground truth and model predictions. The top-one
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probability represents the probability of a document being ranked at the topmost position.

Liisiner(F,Y) = = > P(y;) log P(3)

Yi

P(yi) = S0 (2.27)
L exp(Zi)
P00 = 5 ey

P(y;) denotes the ideal top-one probability of the i;;, document given the ground truth; P(9;)
denotes the top-one probability given the model prediction. Figure 2.12 shows how relevance
labels and predictions are mapped to probabilities. The loss is not at its minimum until §; = 2
which produce the correct rank.

label B exp(2) B
5 (1) = exp(2) + exp(1) + exp(0) 0665
Y1 =
exp(1)
=1 P = =0.24
Zz 7 (32) exp(2) + exp(1) + exp(0) 0-245
3 —_
ezp(0)
P = =0.
(3) exp(2) + exp(1) + exp(0) 0.090
prediction . exp(1)
P = = 0.422
- : (@) exp(1l) + exp(1l) + exp(0) 0
= 1| P(g,) = cep(l) = 0.422
2o T ()t eap(1) +eap(0)
o P(g) = eep(l) —0.155
Ys) = exp(1) + exp(1) + exp(0)

Figure 2.12: An example of ListNet loss. Labels and predictions are mapped to two probability
distributions of preferences. The loss is minimized when the bottom probability distribution is
identical to the top distribution.

Listwise losses are considered more effective than pairwise and pointwise approaches which
discards ordering information or models ordering indirectly. But in a binary relevance setting,
for example MS-MARCO passage ranking [143], a lot of ties exist. Listwise approaches may not
be superior to pairwise approaches due to the lack of informative orders. Additionally, the effec-
tiveness comes at the cost of efficiency. Listwise losses have higher computational complexities
and are more suitable to be placed at later stages of a multi-stage ranking pipeline where the
number of documents to rank is considerably small.
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2.3.4 NETWORK OPTIMIZATION

A neural network is usually optimized using batched stochastic gradient descent, which is an
optimization algorithm that minimizes a differentiable function. Although many machine learn-
ing techniques use gradient descent as a black box tool, understanding the dynamics sheds some
light on tuning hyper-parameters such as learning rate when designing a neural ranking model.
We refer readers to Ruder [175] for a comprehensive introduction to the technique and provide
an intuitive description here.

Given a loss function, or objective function which we do not distinguish in this thesis, L(9)
parameterized by 0, the objective is to find an optimal set of parameters 6* which minimize L:

0" = argmin L(60) (2.28)
0

Gradient descent works by iteratively updating the parameters 6 along the opposite direction of
the gradient of the function which leads to a minimum through the steepest and fastest route.
The update can be described by Eq 2.29.

0 =0 — AVoL(0) (2.29)

The adjustment is composed of two components: the direction VyL(6) and the step size 1. VyL(0)
denotes the gradient of L(6) with respect to 8 and dictates the steepest direction of descent in
the parameter space. A is the learning rate and dictates how much we move along that direction.
Gradient descent is analogous to a hypothetical scenario where we try to descend a mountain as
fast as possible. At any location, we need to decide the direction to move and how much to move
along that direction. As we move, the direction may no longer be optimal, and we need to adjust
again.

A A
loss loss

local minimum local minimum

global minimum global minimum

> >
> >

parameters parameters

(a) Too small or too large learning rates lead to sub- (b) Adaptive learning rate decays gradually to
optimal solutions. reach the global minimum.

Figure 2.13: Examples of gradient descent with different strategies for learning rate.
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Figure 2.13 illustrates the impact of learning rates in minimizing the loss parameterized by
one parameter. In fact, modern neural ranking models often contain millions or even billions
of parameters which make it extremely hard to reach the global minimum. Figure 2.13a shows
that, if the learning rate is too small (red color) or too large (blue color), the optimization may
be stuck at some local minimum or not converge as it approaches the global minimum. Ideally, a
proper learning rate should sometimes be large enough to escape the local minimum and be small
enough as the model approaches the global minimum, as shown in Figure 2.13b. Many strategies
have been proposed to tackle the problem. For example, popular approaches like Adam [100] and
AdamW [122] compute an adaptive learning rate for each parameter. The descending process is
like a ball rolling down a hill. If the hill is steep, the ball accelerates and the learning rate becomes
larger; as the hill gets more flat close to the bottom, the momentum is reduced due to the friction
with the ground and the learning rate becomes smaller.

The training dynamics also shed some light on finetuning pretrained models which we will
discuss shortly. Transformers are often heavily pretrained for various language modeling tasks
over millions of steps. With a pretrained model, a large learning rate may not work well as it
drives the parameters away from its current minimum and lead to sub-optimal solution. We
have observed in our work that the proper learning rates for finetuning are usually orders of
magnitude smaller than the pretraining stage.

SEQUENCE MODELS

Text is one kind of sequence data in the real world. Many others such as music, videos, or DNA
sequences are common too. According to whether input and output is sequence data, sequence
tasks can be classified as one-to-many, many-to-one, and many-to-many. One-to-one is the reg-
ular feed-forward neural networks formulation and can be considered a special case of sequence
tasks but is not the focus of this section. Table 2.4 shows several examples of sequence tasks. Story
generation can be formulated as a one-to-many task. The output of story generation is a piece
of text and the input might be a genre identifier. Image captioning takes an image and outputs a
caption. Sentiment analysis is a typical many-to-one task where the output is scores or classifi-
cations indicating positive or negative emotion. Queries and documents are also sequence data.
Ranking is essentially estimating the relevance between two sequences of text. Many-to-many
tasks are more challenging as the input end and the output end are both sequences. Named entity
recognition assigns a label to every term in the sequence. Machine translation, summarization,
and query generation map source text to target text depending on the task formulation.
Sequence data has two challenging properties that are nontrivial to model: variable lengths
and long-term dependencies. A news article may contain thousands of words while the conclud-
ing text could depend on only the early introduction text. These properties of sequence data have
motivated a special kind of models: sequence models. In this section, we review various sequence
models used in IR. Particularly, our work heavily relies on the transformer architecture [201].
Strictly speaking, transformer-based ranking models are a type of neural ranking models, but we
have a dedicated section to introduce them instead of discussing them in earlier sections due to
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Table 2.4: Examples of sequence modeling for text.

Type Task Input Output
One-to-many story generation genre text
One-to-many image captioning image text
Many-to-one sentiment analysis sentence classification
Many-to-one ranking query and document  score
Many-to-many named entity recognition text text labels
Many-to-many machine translation source language target language
Many-to-many summarization long paragraph short summary
Many-to-many query generation document query

the importance to this thesis. We will start with a brief introduction to early sequence models
which preceded transformers and whose shortcomings inspired transformers. We also introduce
a special type of sequence model: seq2seq whose input and output are both sequence data. In
each part, we first introduce a high-level abstraction of the type of models, followed by specific
examples.

SEQUENCE MODELING

Sequence Representations. As a standard practice, every word in a sequence of text is rep-
resented as a word embedding which is a vector of a predefined dimension d, for example 512,
768, or 1024. Imagine a 3-dimensional space, a word is like a point embedded in such a space. The
choice of the dimension is empirical and often depends on the available computational resources.
Usually, the larger, the more expressive the representation is, but the computational complexity
grows as the size grows. The sentence “She is eating a green apple” contains 6 words and is likely
to be converted into 6 vectors of size d.

Word embeddings are often learned from unlabeled text. For example, Word2vec [130] pro-
posed learning word embeddings through predicts the context words given a target word. Using
“She has apple juice every day” as an example. Suppose we use 2 words on the left and right as
context. Given “apple”, the model is trained to predict “she”, “has”, “juice”, and “every”. When the
model is trained with a different sentence “She has orange juice every day”, it will also learn to
predict the same context given “orange”. Formally, let 6;, 0. represents the embeddings of the tar-
get word t and context word c. The simplest objective is to maximize the probability of predicting
t given c in the vocabulary V:

P(clt) =

Eventually, “apple” and “orange” will have very similar word embeddings in order to maximize
the probability.

37
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Word2vec is an example of how vector representations of words can be learned. There are
many other techniques such as the neural language modeling approach [16], GloVe [158], and
more recently contextualized embeddings such as ELMo [159] and BERT [57]. Importantly, con-
textualized embeddings address a limitation of static embeddings by taking into consideration
the context. Note that word2vec also uses context words to learn the embeddings, but the learned
embeddings are static after training. Using the sentence “she has apple juice every day” as an
example. The word “apple” on its own can refer to the fruit or a company. With static word em-
beddings we can not distinguish the meaning. However, the contextualized approaches yield the
embeddings of “apple” conditioned on its context — “juice” is a strong indication that “apple” is
the fruit. So, it is likely the contextualized embeddings of “apple” more accurately represent its
real meaning. All of them can map words to real-valued vectors that contain the meaning of the
words so that similar words are closer to each other in the vector space. Word embeddings are
fundamental to sequence models, so, in this thesis we will use word embeddings to represent a
sequence.

Recurrent Neural Networks. Recurrent neural networks (RNN) [177] are one of the earliest
sequence models. An RNN processes the elements of a sequence one by one, so it can model
variable-length sequences. When processing each element, an RNN maintains a hidden state that
encodes the information of all previous elements, so it can model long-term dependencies. Fig-
ure 2.14 shows a vanilla RNN. Let X = {x1,Xa,...,Xt,} denote the embeddings of the input
sequence of length t, Y = {y1,y2,...,ys,} denote the ground truth sequence in a supervised
setting, Y = {1,92,..., s, } denote the output sequence of length t,. Note that ¢, may or may
not be equal to t,. For example, in named entity recognition, the network produces one label for
each term, so ty is equal to ¢, as illustrated in Figure 2.14. In translation, the translated text may
not have the same number of terms as the original text, so t, is not equal to t,, which will be
discussed shortly.
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Figure 2.14: A sequence model structure shared by RNN, LSTM, and GRU.
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The left panel of Figure 2.14 shows a physical computing unit called a cell; the right panel
shows the same cell at different time steps. A cell takes as input x; and the state from the previous
step hy_; and yields j; and the new hidden state h;. The first hidden state hy is often initialized
with 0 since there is no previous step. An RNN cell is parameterized by three matrices Wpy, Wy,
Wy, and two bias vectors by, and b,. A cell is described as follows:

h¢ = 0(WhxXx¢ + Whahi_1 +bp)

A (2.30)
§r = o(Wnyhy—1 +bo)

where o is an activation function. This high-level illustration is also shared by other sequence
models such as an LSTM [81] and a GRU [34] but they differ in cell definitions.

This abstraction of sequence data has two intrinsic shortcomings. First, the hidden state h;
needs to encode all the information before the current time step ¢. As the sequence gets longer,
the burden on h; increases. Second, the calculations can not be parallelized due to the recurrent
dependencies - to calculate h;, we need to calculate h;_; first. The first shortcoming inspired the
invention of the attention mechanism and the second shortcoming later inspired the Transformer
architecture.

Convolutional Neural Networks. Sequence data can also be modeled using convolutional
neural networks (CNN) [68]. Essentially a convolution operation is a window (a kernel) sliding
through the sequence and taking dot products of local regions (Figure 2.15). So this operation
can be naturally applied to sequence data. In contrast to an RNN, a CNN learns a fixed-length
local context and has control of the length of dependencies to model by adjusting kernel size.

input kernel ot
x1 !
T4 2 |
x5 !

Figure 2.15: An illustration of convolution operation over 1-dimensional data. The operation is
essentially a dot product of a kernel vector and a slice of the sequence.

+ 39

Figure 2.16 shows an example of applying a CNN for sentence classification proposed by Gehring

et al. [72]. A word is represented as a d-dimensional vector and a sequence xi, x3, .. ., x;,_ can be
interpreted as 1-dimensional data with d channels. Three kernels with different colors are shown
in the figure. Each kernel has a window size k = 3. After convolution and pooling, the original
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sequence is mapped into a vector space which can be processed by a standard feed-forward net-
work.

g embedding dimension kernel output \‘\ pooling feed forward
)
1

T2

T3

T4

convolve -

_________________________________________________

Figure 2.16: CNN for sequence modeling.

Using CNN for sequence modeling is an attempt prior to Transformers in reducing the se-
quential dependencies of RNN as the convolution calculation can be fully parallelized. More re-
cently, some new connections between CNN and Transformers were unveiled by Cordonnier
et al. [41]. They inspected the behaviors of CNN and Transformer vision tasks and found that
the self-attention mechanism is at least as expressive as any convolution layer. More generally,
self-attention can behave very similarly to convolution on local contexts.

Seq2seq. The seq2seq model is a type of sequence model whose input and output are both
sequence data. It was originally proposed by Sutskever et al. [194] for machine translation but
was shortly adopted for a variety of text-related tasks including text summarization, question
answering, and the focus of this chapter — query generation. We will use the term seq2seq to
refer to these tasks and all related models more generally.

Seq2seq Model

Input Sequence Output Sequence

Representation

Figure 2.17: Seq2seq abstraction.
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The seq2seq abstraction is illustrated in Figure 2.17. A seq2seq model consists of two parts:
an encoder and a decoder. The encoder receives the input sequence and encodes it into a la-
tent representation; the decoder decodes the latent representation into the output sequence. The
encoder-decoder design relaxes the length alignment constraints between the input and the out-
put, so the model can produce a sequence of arbitrary length which is often the case for many
tasks such as machine translation.

Typical seq2seq models include RNN [177], LSTM [81], and Transformer [201]. Figure 2.18
shows how a seq2seq model is implemented using RNN. The input sequence is encoded into
hy using one RNN cell. Then another RNN cell yields a new word 7j; based on h4 and continue
generating new words using previously generated words. To optimize such a model, we calculate
the cross entropy loss which is equivalent to maximum likelihood estimation given the ground
truth sequence Y = y1,y2, ..., Yz,

Ly

L=- Zlogp(yt|yAly QZ, e sgt—laX) (231)

t=1

where P(y;|-) is the probability of the word y; produced by a softmax operation. Inference works
a bit differently from training. The model needs to condition on the actual generations in gener-
ating the next word. During generation, the output is a distribution over the entire vocabulary, so
there are two ways of choosing words. The greedy approach chooses the word with the highest
probability at each generation step. However, this approach often leads to low-quality results as
local optimums do not guarantee global optimum. To get an optimal overall output

argmax P(g1, §a, - -+, §¢|X),

IR
we need to examine the probability of every possible combinations of words. For example, to
get the optimal sequence of n words, the number of candidate sequences to examine is 0" where
v is the vocabulary size, which is infeasible in practice. The beam search algorithm is a trade-
off and is widely used. It maintains k sequences of words during generation. At each time step,
k sequences becomes k X v sequences. Then only the top k sequences are kept, and the reset
are discarded to reduce memory consumption. The process continues until all k sequences end.
The beam search also does not guarantee a global optimal solution but can significantly improve
generation quality in practice.

Now let us look at training again. The output-as-input process can result in problems. If
the first prediction §; is wrong, then ¢, is probably wrong, then g5 is also wrong, and finally
the entire sequence is wrong. This problem will eventually lead to slower convergence and an
unstable model. It can be alleviated using the teacher forcing [210] algorithm which uses ground
truth tokens as decoding input. That is, y; is conditioned on v, ys, . . ., y,—1 instead of the model
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(a) RNN seq2seq model during training. Typically, the teacher forcing algorithm is used to avoid accumu-
lating errors and the ground truth sequence is used as the input for the decoder.
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(b) RNN seq2seq model during inference. The decoding process conditions on real-time generations.

Figure 2.18: RNN Seq2seq model. The input sequence is encoded into a latent representation
then decoded into the output sequence. A special eos token is used to initiate the decoding pro-
cess.
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prediction ¢y, 9z, . . ., §z—1. The loss for teacher forcing is defined as follows.
Ly
L= _Zlogp(y[|ylr y23“' syt—hX) (232)
=1

Unsurprisingly, the generation quality of a seq2seq model depends on the encoder to com-
press all the information of the input sequence into a fixed-length vector (h4 in Figure 2.18).
While this might be sufficient for short sequences, it is often a bottleneck in processing long se-
quences [6]. Cho et al. [33] show that the translation performance degrades dramatically as the
sequence length grows. In the next section, we discuss the attention mechanism which allows the
decoder not only use hidden information, but also use information from the original sequence.

Attention Mechanism. In order to alleviate the limited expressiveness of representing a se-
quence with a single vector, Bahdanau et al. [6] first proposed the attention mechanism, which
imitates human attention in understanding text, for machine translation. The concept of atten-
tion is very intuitive. See Figure 2.19 for an example. To understand the sentence, we need to
link different words: to understand what is being eaten, “eating” and “apple” are clearly more
useful than “eating” and “green”. So, we pay more attention to “apple” than “green” when we
read “eating”. This is the intuition behind attention — words having different importance to each
other.

high attention

| 1

She is eating a apple.

Figure 2.19: The importance of context in a sentence. (Image source: https://lilianweng.github.
io/lil-log/2018/06/24/attention-attention.html)

To formally describe attention, we use the following notation. We have a target sequence
{t1,t2, ..., tm} and a source sequence {si, s, ..., S, } where m and n are the number of words in
the target and source sequence correspondingly. Let t; € R? and S| € R¢ denote the column
vector representation of the word t; and s; in a d-dimensional space. Thus we can convert the
sequences into vector representations: T = {tit; ...ty } and S = {s1s3...8y}. Given T and S, The
attention mechanism assigns an importance weight of every word in S to every word in T.

The source sequence S = {s1S;...sy} is first projected into a key space K = {kiky...kpy}
where k; € R? and a value space V. = {vyVv,...vy} where v; € R9. The target sequence T =
{tity ...ty } is mapped into a query space Q = {q1qz ... qm} Where q; € R?. We generalize the
concepts of query, key and value from Vaswani et al. [201] without specifying how the projection
is performed. Figuratively, after the projection, the query decides its attention by checking the
key and extracts information from the value.

+ 43
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Figure 2.20: A framework for the attention mechanism. Q and K are used to calculate the atten-
tion distribution a;; via Eq 2.33 where i denotes the attending word and j denote the attended
word. V is then aggregated into a new context vector according to the attention weights via
Eq 2.34.

Using Q and K, an attention distribution A is calculated. Let A = {ag,a,,...,an} and a; =
[ai1, Gi2, . . ., ain]. The attention from the i-th word to the j-th word is defined as follows:

o= PUa(gi k)
Y Ey exp(falan k)’

i=1,2...,m, j=12....n (2.33)

where f; is a scoring function between two vectors and its definition differs across various at-
tention mechanisms. With the attention weights a;, V is aggregated into a new context vector c;.

Cizzaijvj, i=1L2....m, j=1L12...,n (2.34)
J
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The entire process is illustrated in Figure 2.20. The specific choice of query, key, value vectors is
architecture dependent. Table 2.5 summarizes how these vectors are defined in different architec-
tures. RNN and LSTM based methods use hidden states from the encoder and the decoder while
Transformers use a dedicated feed-forward network for the projection. Another major difference
is how the score function f; is defined which is also shown in Table 2.5.

Table 2.5: Common attention mechanisms. h;_; and h; denotes the (i —1)-th hidden states in the
target sequence and j-th hidden states in the source sequence. Wq, Wy, Wy, W, and v, denote
trainable parameters. d is the dimension of the query and key vectors.

Name Architecture g k; Vj fa
Additive [6] RNN h;_4 h; h; v, tanh(W, [qi @ kj])
General [124] LSTM hi_1 hj hJ qiTWakj
Location only [124] LSTM h;_¢ by h; Waqi
Dot product [124] LSTM h;_¢ h; h; qik;
Scaled dot product [201] Transformer Wgt; Wys; Wys; \/Laqikj

There is a special case of attention called self-attention recently proposed by Lin et al. [115]
where the target sequence and the source sequence are the same. In order to distinguish self-
attention from the attention between two sequences, we refer to the latter as cross-attention.
Self-attention is often used to learn contextualized sentence embeddings. Due to the rich rep-
resentations self-attention can learn, models with self-attention have performed exceptionally
well on sequence classification tasks such as sentimental analysis and textual entailment, which
is beneficial to IR where relevance judgment can also be viewed as classifying relevant or non-
relevant.

TRANSFORMER

As we mentioned previously, early sequence models have several limitations: 1. the expressive-
ness of using a single vector to represent the sequence; 2. the sequential dependency in pro-
cessing sequence elements. Transformer architectures have addressed the first issue by using
self-attention and the second issue by processing sequence elements simultaneously. Using self-
attention leaves no room for information loss even when processing long sequences. Using posi-
tional embeddings completely removes the sequential dependency while retaining dependency
information.

The self-attention in a Transformer is the same as the attention mechanism we described in
Sec 2.4.1 but has a focus on looking at the sequence as a whole. Specifically, the m-word target
sequence {ty,t, ...,y } and the n-word source sequence {sy, s, ..., S,} are now represented as
matrices T € R™? S € R™ (d is the embedding dimension) instead of two sequences of vec-
tors. This is a trivial change in perspective, but it implies important efficiency improvements.
Importantly, a key in removing sequential dependencies is the positional embeddings, which en-
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code positional information to account for word ordering. Every word embedding vector is added

with a positional embedding vector before being processed by the attention mechanism. Posi-
tional embeddings only depend on the position of a word in a sequence, and can be learned
or fixed. Vaswani et al. [201] originally proposed using sinusoid for positional embeddings. At
each position, two signals are interleaved according to Eq 2.35. Figure 2.21 shows the values of
5 positions, each of which contain 512 dimensions. Note that a curve at odd number positions is

interleaved with a curve at even number positions.

o , _ sin(pos/100004m/d) ifdim=0,2,...
positional_embedding(pos, dim) = dimet) /d (2.35)
cos(pos/10000(4m=D/dy if dim = 1,3, ...
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Figure 2.21: Sinusoidal positional embeddings proposed by Vaswani et al. [201].

Let Pt and Ps denote the positional embedding matrices which can be two slices of the same
embedding matrix. T and S are then updated by adding the positional embeddings:

T=T + Pr
mxd mxd mxd
S =S+ PS
nxd nxd nxd
Note that we use the notation
T : TeR™

mxd
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Figure 2.22: An example of self-attention in transformers. The embeddings of “eat” is updated

» &« >

with the embeddings of “eat”, “an”, “apple” according an attention distribution.

to annotate the matrix with it shape to improve readability. Now we have full information en-
coded in T and S. They are converted into query, key, and value matrices:

Q=TxW
mxd mxd dxd
K=TxW
nxd nxd dxd
V=SxW

nxd nxd dxd

Accordingly, the query, key, value vectors can also be represented using matrices such that Q
R™d K € R4V € R™, The self-attention in Transformers can be simply described by:

C = softmax(L QK"HV (2.36)

mxd d mxddxn nxd

where a softmax is applied to the last dimension of the matrix. The computation is fully paral-
lelized across the sequence (the m and n dimension of the matrices). Note that C € R™ has
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2.4.3

the same shape as T € R™¢

without extra projecting and reshaping which facilitates stacking up multiple attention layers
for larger and more powerful models.

, which means this operation can be easily repeated multiple times

Figure 2.22 shows a concrete example of how self-attention is calculated inside a transformer
for the term “eat”. All the terms are first represented as embedding vectors (E). Embedding vectors
are then mapped to query (Q), key (K), and value (V) vectors. Multiplying query vectors and key
vectors results in attention distribution (W). The dot product of the attention distribution and
value vectors results in the final contextualized embeddings of “eat”.

Note that a transformer is also a seq2seq model (Sec 2.4.1), which means it has an encoder
and a decoder. A key difference in an encoder and a decoder is how dependencies are modeled
which is an important inspiration for our work in Chapter 5. We will revisit attention again from
the perspective of dependency modeling in Sec 5.2.3.

NEURAL LANGUAGE MODELS

The success of Transformers in various text-related fields are not only derived from the architec-
ture but also from pretraining. Traditionally, the parameters of a neural network are randomly
initialized and trained for specific tasks. However, as the number of parameters grows, the time
and cost of training a network become higher and can become prohibitive. Pretraining, with the
idea that general knowledge should be transferable across related tasks, has significantly relieved
the burden of training a new network from scratch every time. With a pretrained model, down-
stream tasks then only need slight finetuning to achieve competitive results. The pretraining-
finetuning paradigm is now regularly adopted in designing large neural models, which makes
powerful models more accessible and benefits numerous real-world tasks.

The tasks used for pretraining should be general so that the learned knowledge can be widely
applied and easily transferable. Language modeling thus has been playing a central role in pre-
training as it learns generic language knowledge. Let us briefly review language models first. In
Sec 2.2.5 and Sec 2.2.6, we have covered n-gram language models and their use in the query likeli-
hood model and sequential dependency model. In short, a language model estimates a probability
of a sequence of words P(wy, ..., wy,,). Traditional language models use statistics (mostly word
frequency) to estimate the probability and are referred to as statistical language models [223] in
the literature. It is known that statistical language models suffer from the curse of dimensionality
and have inherent difficulties in capturing long-term dependencies and generalizing across con-
texts [73]. Concretely, the number of possible n-grams of a vocabulary sized v is 0™ which grows
exponentially as the dependency range n grows. This often causes a severe data sparsity prob-
lem as many possible n-grams may not be observed in training. Although it can to be alleviated
by smoothing techniques such as Dirichlet smoothing and Jelinek-Mercer smoothing, the final
performance is sensitive to smoothing and far from being optimal. Another problem is statisti-
cal models are hard to generalize since words are represented as discrete symbols. Vocabulary
mismatches are a representation of this problem. “teenage pregnancy” and “teen pregnancy” are
two different queries and can show significant difference in retrieving performance.
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Using neural networks to approximate language models have alleviated the aforementioned
problems. In contrast to statistical models, these models are referred to as neural language models
in the literature [16]. They have been shown to be rich in general linguistic knowledge [35]
and have properties beneficial to many text-related fields including IR. Neural language models
can scale well by using neural networks to approximate language probabilities. The number of
parameters does not grow as the range of dependencies grow, so long-term dependencies can be
relatively easily modeled. They also generalize well by representing words in a continuous space
which is a nice property for relieving vocabulary mismatches. In a properly trained language
model, “king”—“man” + “woman” results in a vector closest to “queen” [130] in the latent space.
It is no surprise that “teenage” and “teen” are also very close to each other in such a continuous
space. Beyond these theoretical advantages, the empirical success of neural language models has
also been observed by numerous work reporting remarkable progress in a variety of natural
language tasks. Language model pretraining is now routinely applied in IR: using a finetuned
transformer ranking model to maximize ranking effectiveness after an initial filtering stage using
aretrieval method such as BM25 is now a common practice. For example a large portion of models
follow this paradigm in the recent TREC-COVID track [203].

BERT. Among the wealth of pretrained transformer models, BERT [57] has arguably been one
of the most successful adapted to the ranking task. BERT uses only the encoder component of
a transformer architecture and was pretrained with a masked language modeling (MLM) objec-
tive. The traditional language models aim at predicting the next word given a sequence of words
and is also called causal language modeling (CLM) due to the use of sequential dependencies. In
contrast, the MLM predicts a few masked words in the sequence without being limited to condi-
tioning on the past words (Figure 2.23a). Formally, let S = {wy, wy, ..., w;,,} denote a sequence of
words; let M C S denote some randomly chosen words that are masked; let U denote the original
sequence with words in M being replaced with a special “[mask]” token. The objective of MLM
is to maximize the likelihood to successfully recover M, or minimize the following loss:

Loy = — Z log P(w|U) (2.37)
weM

BERT uses a bidirectional attention mechanism conditioned on U which learns relationships
between words and contexts. BERT based models have consistently produced competitive ap-
proaches for IR tasks such as MS-MARCO passage (according to disclosed models) and docu-
ment ranking [143], TREC 2019 [44], and CAsT 2019 [54], and generally require only a moderate
amount of fine-tuning,.

Fine-tuning BERT is straight-forward. As discussed in Sec 2.3.3, the training of a neural rank-
ing model is orthogonal to the model architecture. Thus, a transformer ranking model can be
trained the same way as other neural ranking models. Guo et al. [76]’s abstraction for ranking
models (Equation 2.20) still applies. Under their framework, i and ¢ are null functions, 5 simply
looks up word embeddings given word indexes, and g is the entire network including the atten-
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tion mechanism. For example, Nogueira and Cho [145] directly apply the fine-tuning approach
described by Devlin et al. [57] to produce a competitive system. They cast ranking as sentence pair
classification and fine-tune BERT using the MS-MARCO training data. Dai and Callan [51] em-
ploy the same fine-tuning approach and observed significant improvements on other commonly
used IR test collections such as Robust04 and ClueWeb09B. In more recent work, Nogueira et al.
[147] proposed a multi-stage re-ranking system with a modified fine-tuning approach.

BART. BART is a pretrained encoder-decoder transformer. The core idea is to corrupt data (e.g.
mask words, remove words, change word orders) and train the model to recover the data. Fig-
ure 2.23b shows how masked language modeling is performed on BERT and BART. On the en-
coder side, the input sequences are the same as in BERT while on the decoder side, sequential
dependencies are retained. Nogueira et al. [149] explore the use of an encoder-decoder trans-
former T5 [164] for ranking. By casting relevance prediction as text generation, the model is
trained to predict “True” or “False” literals given a query-document pair. The documents are
then re-ranked based on the probability assigned to “True” token. However, applying encoder-
decoder models generally require modifications to model training and incur additional retraining
costs as the models tend to be much larger than an encoder-only architecture. It is also unclear
exactly how an encoder-only architecture and an encoder-decoder architecture differ in terms
of retrieval effectiveness. We include a detailed study in Section 5.5.4 that explores this question

further.
A| B €Y D [FE A | B €Y D FEY</s>
r T
i Encoder : \ Encoder J I:{> ‘ Decoder :
T T T
A | B B8 D ¢ A | B B8 D B2 <>|A|B|C|D|E
(a) BERT pretraining. (b) BART pretraining.

Figure 2.23: Language model pretraining. In a sequence of words “ABCDE”, “C” and “E” are
masked out and represented with “?”. Models are trained to predict these masked words by learn-
ing to infer from the context. “<s>” and “</s>" are special tokens indicating the beginning and
ending of a sequence. The sequences on the decoder side are shifted to maintain the sequential
dependency.
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2.4.4 SEQUENCE MODELS FOR IR

Sequence modeling has long been used throughout IR. We summarize the representative work
in Table 2.6. First, each work has a focus on learning representation, end-to-end ranking, and/or
generation. Second, each work can also be classified according to the objective: ranking effec-
tiveness and/or readability. The readability objective is the maximum likelihood objective. Since
the targets are human-written text we denote it as readability.

Early models focused on learning representations for queries and documents and use simple
functions such as cosine similarity to measure relevance. Later, there was a shift towards using se-
quence models for end-to-end ranking as it has been observed that query-document interactions
are crucial in deciding relevance. Early models are rarely used for generation which is particu-
larly difficult, from both research and engineering perspectives. From the research perspective,
generation has a challenge in text understanding especially in modeling of long-term text de-
pendencies. This was not made easy until attention was invented. The inefficiency caused by
sequential dependencies was also nontrivial to relieve. From an engineering perspective, trans-
formers are not only a novel architecture but also an engineering masterpiece. Transformers have
defined a set of interfaces for sequence modeling which flattened the learning curve. Sharing the
same functional interface also makes numerous transformer-based models readily available. The
parallelized internal calculation can also fully exploit the computational power of modern GPUs.
Since the emergence of transformers, researchers have easily accessible tools [211] to explore
generation tasks for IR while ranking remains the main focus.

There was not a dominant architecture in early research due to the mixed results reported
from those models. While none was dominant, researchers put an emphasis on designing their
own networks. Again, as transformer emerged, it has become prevalent due to its ability of cap-
turing long-term dependencies and fully parallelized computation.

Since early work focused on ranking, they were mainly trained with ranking effectiveness
objectives. Some recent work focused on generating queries but not with an effectiveness objec-
tive. Chapter 4 (SNLQ) focuses on both effectiveness and readability of generated queries. Chap 5
(GDMTL) jointly models ranking and generation under a unified framework.

2.5 REINFORCEMENT LEARNING

Reinforcement learning is a machine learning paradigm that enables a learning agent to learn
by interacting with an environment. The learning process is driven by rewards the agent re-
ceives from the interactions, which is analogous to how human-beings learn: a player learns by
playing games and winning and losing. More formally, this interaction loop is illustrated in Fig-
ure 2.24. At time step t, the agent observes the environment, and then based on the observed
state Sy, the agent issues an action A; to the environment. The environment provides a reward R;
to the agent and changes its state to S;4; as a result of the interaction. After receiving a reward,
the agent then adjusts itself accordingly. The entire process can be represented as a sequence:
Sos Ags Ro, S1, A1, Ry, . . . . The learning objective is for the agent to maximize the return G;, defined
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Table 2.6: Representative sequence models for IR. The main focuses of using sequence models
for IR are learning representations (Rep), end-to-end ranking (Rank), and generation (Gen). They
can be trained with ranking effectiveness or readability (maximum likelihood) objectives.

Year Arch Focus Objective
Rep Rank Gen Effective Read
DSSM [85] 2013 FFNN v v
CDSSM [188] 2014 CNN V4 v
R2N2 [31] 2015 RNN v v
DRMM [75] 2016 FFNN VA v
Duet [132] 2017 CNN v v
DeepRank [155] 2017 CNN+RNN v v
K-NRM [215] 2017 FFNN v v
SNRM [219] 2018 FFNN v Ve v
CONV-KNRM [52] 2018 CNN v v
BERT [51] 2019 Transformer v v
BERT [145] 2019 Transformer v v
Doc2query [148] 2019 Transformer v v
SNLQ [116] 2020 Transformer v v v
GDMTL [117] 2021 Transformer v v v v

as a long-term accumulated reward:

Gy =Ry + YR + }’2Rt+2 +--

= (2.38)
= Z )’th+]<
k=0

where y is the discounting rate which discounts future rewards. It is critical that when the agent
learns, it always considers the long-term accumulated reward G, instead of the short-term imme-
diate reward R;. In a game, we want to use strategies to get the final victory instead of focusing
just on short-term benefits.

How to optimize such a model is the key question. The learning algorithms can be divided
into two categories: value-based and policy-based. Value-based methods estimate the value of
a state V(S;) = E[G,|S;]: the expected return one can possibly achieve from state S, onwards,
and the value of an action under the state Q(S;, A;) = E[G;|S;, A¢]: the expected return one can
possibly achieve by issuing action A; under state S;. The biggest drawback of this category of
algorithms is that the number of possible actions is too large, and so value-based methods usually
do not scale well. Unfortunately, this is often possible for text generation where the generation
vocabulary is the action space and often contains tens of thousands candidates. Policy-based
methods address this issue by estimating a preference for all the actions directly, bypassing the
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Figure 2.24: The interactions between an agent and an environment. The agent observes the
environment and issues an action to interact with the environment, then receives a reward from
the environment.

estimation of single action values. So, policy-based methods are more commonly used for seq2seq
problems.

Figure 2.25 highlights the differences in model input and output for value-based and policy-
based methods. Value-based methods produce an estimated value of state-action pairs while
policy-based methods produce a preference over the entire action space.

Policy-Based Methods. A policy r is a parameterized decision-making rule and is often im-
plemented as a neural network. The policy is optimized through gradient ascent, so policy-based
methods are also referred to as policy-gradient methods. When a Policy Gradient is used to op-
timize neural networks, the rewards can be any value and are not required to be differentiable
with respect to network parameters. This property allows us to use a variety of non-differentiable
rewards such as summarization metrics like ROUGE, and ranking metrics like MAP and NDCG.
This is achieved using the Policy Gradient Theorem

J(0) =V (So)
VJ(0) = VV(S) (2.39)
o Es o~z [Q(S, A)Vg In 7 (A|S)]

where J(0) is the objective function parameterized by 8, Q(S, A) is the value of taking action A
at state S, m(A|S) is the probability of taking action A in state S. The Policy Gradient Theorem
allows us to optimize a policy by simply maximizing the multiplication of the action’s value
and its log likelihood value. In practice, the implementation is much simpler as we can turn the
maximization into minimization as in Eq 2.40.

—VoJ(0) < E,[Q(S,A)Vy —Inn(A|S)] (2.40)
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Figure 2.25: An illustration of model designs in value-based and policy-based reinforcement
learning methods. Value-based method takes as input an observation of the environment (such as
araw bitmap from a game display) and an action (such as pressing a button on a game controller),
and outputs an estimated value. In contrast, policy-based methods takes only the environment
observation as input, and produce a preference over all the actions.

Observe that — In 7(A|S) is identical to the cross entropy loss if we imagine the action a as the
“ground truth”. In summary, with the Policy Gradient Theorem, we simply need to sample an ac-
tion, estimate its value, multiply that value Q(S, A) by the action’s cross entropy loss — In 7(A|S),
and minimize the loss. Depending on how Q(S, A) is estimated, Policy Gradient has many varia-
tions. Schulman et al. [184] for example provides a summary of commonly used Policy Gradient
algorithms.

For seq2seq tasks, the most commonly used algorithm is called REINFORCE [209]. The basic
form of REINFORCE uses G, to estimate Q(S, A). Based on Eq 2.40, the loss of reinforcement
learning for seq2seq tasks has the form as Eq 2.41.

n
L == log P(§lin g+, Ge-1,%) - R(G) (2.41)

t=1

where 7j denotes the output and R(7j) denotes the task-dependent reward, such as ROUGE [114]
or BLEU [156] scores against the targets.
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2.6 SUMMARY

In Sec 2.1, we introduced a typical workflow of an information retrieval process, including in-
dexing, query optimization, multi-stage retrieval, and evaluation. We also put the content of the
thesis in the context of the process. In Sec 2.2, we introduced traditional retrieval models. Par-
ticularly, the language modeling approach is the foundation of our fielded relevance models.
In Sec 2.3 we introduced a neural ranking framework and the development of neural ranking
models. We also introduced key techniques of training neural ranking models. In Sec 2.4, we
introduced sequence models, including RNN, CNN and Transformers. We also discussed several
shortcomings of early models such as representation bottlenecks and inefficiency, and how tack-
ling these shortcomings lead to the invention of the attention mechanism and transformers. At
the end of the section, we also discussed the application of sequence models in IR. Finally, in
Sec 2.5, we introduced the principles of reinforcement learning and how it works in optimizing
IR objectives when combined with seq2seq models.






3 OPTIMIZING QUERIES WITH FIELD-BASED
RELEVANCE MODELS

3.1 INTRODUCTION

Query reformulation, query expansion, query re-weighting, and query generation are all con-
sidered to be query optimization techniques which aim at improving the representations of the
underlying information need. Sometimes slightly reformulating or expanding a query can lead to
dramatic performance improvements if the new query manages to address potential vocabulary
mismatches or more verbosely specifies the information need. For instance, in one preliminary
experiment, we found that reformulating “teenage pregnancy” to “teen pregnancy” improves the
Mean Average Precision (MAP) from 0.086 to 0.261 for the TREC Robust04 2004 (TREC disks 4
and 5) collection [205]. Expanding the query to “teen pregnancy prevention” further improves
the score to 0.386. It is impossible for a user to know if a query is the best for a particular data col-
lection, and query optimization techniques can be used to alleviate such vocabulary mismatches
or under-specification problems.

One of the most fundamental and principled paradigms to query optimization is relevance
models [106] where terms in the query and in relevant documents are assumed to be generated
by a latent relevance-based language model. A relevance model is usually induced from pseudo
relevant documents — i.e., those most highly ranked by an initial search. We consider relevance
models as a general query optimization technique as they can be used for either reformulating
(RM1 [106]), expanding (RM3 [1]), re-weighting [106], or generating [18] a query.

However, past work on relevance models has focused on unstructured text. When inducing
a relevance model from a structured document consisting of multiple fields, e.g. title, heading,
and inlink which are derived from HTML and SGML markup, important signals in document
structures may be lost as every document is treated as a bag of words and every field is considered
equally important. Empirically, the match between a query and document fields is often assumed
to be a strong relevance signal. For example, titles and headings are usually more concise and
descriptive than the main text of a document. Figure 3.1 shows an example of the structure of the
Information Retrieval wikipedia article. The headings of the article provide important information
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Figure 3.1: The structure of the Information Retrieval wikipedia page.

about the content of the article and can be used to surface relevance signals. Commonly used Web
retrieval methods such as BM25F [221] and FSDM [129] outperform their non-field counterparts.
From a theoretical point of view, traditional relevance models assume that the entire document
is generated from the same language model. This may not be true as can be observed from the
field term frequency analysis in Figure 3.2. Different fields share a high-level general trend, but
the word preferences may vary dramatically.

We first present a study of using field-based information in the relevance modeling frame-
work. Our first method induces relevance models from fields independently and then linearly
combines them to create a weighted model. The second method is based on inducing a rele-
vance model from the entire document and using it to score fields. Hence, fields are used in two
(integrated) capacities: sources of information for inducing relevance models and units scored
by using relevance models. Another important aspect of this chapter is a comprehensive fail-
ure analysis of field-based retrieval performance when applying relevance modeling. While past
work has demonstrated the average effectiveness of field-based methods, failure analyses are rare.
These are important for shedding light on potential avenues for performance improvement.

Experiments performed using ClueWeb09B collection show that while common field-based
ranking models improve early precision effectiveness, using field-based information with rele-
vance models can further improve it, specifically, with respect to using relevance modeling with
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Figure 3.2: Field term frequencies of web documents in ClueWeb09B. Terms are ordered by
the frequency in the document body (denoted as body). title is HTML <title> tag; heading is a
collection of <hi>, <h2>, <h3>, and <h4> HTML tags; inlink is the anchor texts of hyperlinks;
body is the <body> tag.

whole documents as is the standard. Our failure analysis shows that field-based relevance mod-
eling is mainly effective for tail queries. We also show that using field-based information, with
or without relevance modeling, has mixed effects in terms of Mean Average Precision (MAP).
However, relevance models are still subject to interpretability and efficiency issues. A rele-
vance model is a weighted bag-of-words and can expand the query to 25, 50, or even 100 terms.
For example, “0.0041 tree 0.0040 family 0.0021 gift 0.0020 engrave 0.0008 birthstone 0.0003 de-
signs ..
of query is unreadable to human beings and hard to process for modern neural ranking models

such as BERT due to the lack of syntax structures. The length of this type of query also requires

" is a query generated by relevance modeling in our preliminary experiments. This type

massive computational resources to process. These factors motivate us to rethink what a good
query is and investigate the prospects of imitating human written queries.

In order to do this, we comprehensively compare sets of automatically generated queries
— produced using random walks over click graphs derived from Bing query logs — and hu-
man generated queries using two commonly used TREC test collections. This approach differs
from previous studies which made comparisons on a query-by-query basis instead of compar-
ing performance distributions of multiple queries for a single information need simultaneously.
We show that the retrieval effectiveness of the automatic queries can reach the level of human-
created queries, although the two sets of queries (per-topic) are quite different in several respects:
the queries themselves, their similarities and the corresponding retrieved lists. So, a performance
gap still exists. Promising advances in IR and closely related fields such as natural language pro-
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3.2

3.2.1

cessing and machine translation may finally make automatic query generation a reality, and we
will explore query generation in the next chapter.

THEORETICAL FOUNDATION

(PsEUDO-)RELEVANCE FEEDBACK FOR QUERY OPTIMIZATION

When different words are used in a query and a document to refer to the same thing, match-
based retrieval methods such as Query Likelihood and BM25 may not effectively retrieve the
relevant documents. While users can reformulate their queries manually, retrieval systems can
also automatically expand/reformulate the query to tackle the problem. Depending on the infor-
mation used for expansion, Xu and Croft [216] classified automatic query expansions into global
methods and local methods. Global methods analyze the entire corpus or employ external the-
saurus or query logs [125]. Local methods refer to (pseudo-)relevance feedback which only uses
the documents from an initial retrieval list, and are the focus of this chapter.

Relevance Feedback. Relevance feedback asks the user to provide relevance judgments on an
initial retrieval list and then refine the retrieval using the feedback. The well-know Rocchio algo-
rithm [174] incorporates user feedback into the Vector Space Model (Section 2.2.3). Let R denotes
the relevant set of documents and A denotes the non-relevant set of documents according to user
feedback; Q = (¢1,92,...) and D = (dy,ds, ... ) denote a query feature vector and a document
feature vector respectively. So, ¢; and d; refer to the same term in the vocabulary but have differ-
ent values in Q and D. Every g; is then updated according the weights of the term in the relevant
and non-relevant sets. The mean weight of the term d; in the R set is added to g;; the mean weight
of d; in the N set is subtracted from g;:

1 1
T = ax-qi+p:—— E di -y — E dl'

where a, § and y are often set to 8, 16 and 4 empirically [46].

This method modifies the original query so that high impact terms in relevant documents
will have higher weights and high impact terms in the non-relevant documents will have lower

weights. The new query Q* = (g}, q5, - . ., ;) is then used to calculate the similarity to documents
as in Eq 3.2.
Scorerocchio (Q, D) = Cosine(Q", D)
__oD
1Q*II - 11D (3.2)
Xidg; - di

DR RENOHE
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Pseudo Relevance Feedback. In contrast to Relevance Feedback, Pseudo Relevance Feedback
does not require users to provide relevance judgments for an initial retrieval list but assumes
that the initial retrieved documents are more likely to be relevant [106]. It also assumes a query
is generated from an underlying relevance-based language model, or simply relevance model,
P(w|R). This model is estimated from the initial retrieval list and then compared against each
document’s own language model for ranking.

Since a query is derived from a relevance model, we can estimate the model from the query
and then factor P(w|R) into estimating the joint probability of P(w, Q):

P(w|R) = P(w|Q)
_P(w.Q)
P(Q)
__Pw,9Q)
S P, Q)

Assuming that w and Q are independent, P(w, Q) can be further factored as a weighted sum
of P(w|D) and P(Q|D):

P(w,Q) = ) P(w,QID)P(D)
D
= > P(wID)P(QID)P(D)
D
o > P(w|D)P(Q|D)
D

Note that P(Q|D) is the query likelihood score of D from the initial retrieval list (Section 2.2.5),
so this equation can be interpreted as a weighted sum of the probability of w in each document,
which for example can be estimated using term frequencies.

The negative KL divergence between P(-|R) and P(-|D) then serves for ranking.

Score(Q, D)rym = —KL(P(:|R)||P(-|D))
« 3" P(w|R) log P(w|D) (3:3)

To alleviate query drift, the original relevance model is anchored to the original query using
a free parameter A, yielding relevance model #3 (RM3) [1]:

Prys(w|R) = AP(w[Q) + (1 = A)P(w|R). (3-4)

The new relevance model is then used to rank documents according to the KL divergence.
Following Lavrenko and Croft [106], many other techniques have been proposed to improve
relevance modeling, as listed in Table 3.1. They are categorized through three perspectives. First,
relevance models may be induced from local or external corpora, or even from different fields
of structured documents. Second, some researches investigate improving document selection or

+ 61
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Table 3.1: Literature on relevance models. L: Local corpora; E: External source; S: Structured
documents. D: Document selection; T: Term selection; Q: Query selection; L: Learned.

Resources Strategy =~ Model
L E S DT Q L

Literature Year

Relevance Based Language Models [106] 2001 V

UMass at TREC 2004: Novelty and HARD [1] 2004

A Framework for Selective Query Expansion [47] 2004 v
Improving the Estimation of Relevance Models 2006 v

Using Large External Corpora [59]

Latent Concept Expansion Using Markov Ran- 2007 v v
dom Fields [128]

Estimation and Use of Uncertainty in Pseudo- 2007 v

Relevance Feedback [40]

Selecting Good Expansion Terms for Pseudo- 2008 v v
Relevance Feedback [29]

A Cluster-Based Resampling Method for Pseudo- 2008 v

Relevance Feedback [109]

Query Dependent Pseudo-Relevance Feedback 2009 v v v
Based on Wikipedia [217]

Entity Query Feature Expansion Using Knowl- 2014 v v

edge Base Links [53]

Query Expansion with Freebase [214] 2015 v v v v
NPRF: A Neural Pseudo Relevance Feedback 2018 v
Framework for Ad-Hoc Information Retrieval

[112]

term selection, or deciding which queries should be expanded. Finally, we identify the works
combining relevance models and supervised learning techniques.

With regard to the resource of relevance models, most relevance models are derived from
local corpora, but the quality of induced models may suffer from low quality documents in these
corpora. Diaz and Metzler [59] introduce RM using high quality external corpora as the addi-
tional source of relevance models. Later, other researchers extend it to Wikipedia pages [217]
and knowledge base [53, 214] by identifying the connection between original queries and enti-
ties in those corpora. To further exploit these high quality corpora, Xu et al. [217], Dalton et al.
[53] and Xiong and Callan [214] also explore the importance of adjusting terms appearing in
different fields. Inspired by their work and other field-based models, In this chapter, we induce
relevance models from web document fields directly and observed significant performance im-
provement. Although relevance modeling is well known for improving the average system per-
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formance, some queries may greatly suffer from it. Cronen-Townsend et al. [47] addresses this
issue by proposing to apply relevance modeling selectively.

From the second perspective, instead of improving the overall quality of relevance models
from external corpora, some work focuses on specific aspects of relevance modeling. Collins-
Thompson and Callan [40] and Lee et al. [109] explore improving document selection by sampling
and clustering techniques respectively; Cao et al. [29] train a classifier to distinguish good and
bad terms; Xiong and Callan [214] devise a term score function to improve the weights of terms.

Finally, we consider the combination of relevance modeling and maching learning tech-
niques. Cao et al. [29] and Xu et al. [217] train a model to classify terms as good or bad, and
use only good terms for query expansion. Xiong and Callan [214] use a linear SVM classifier to
estimate the probabilities of terms in an expanded query. Li et al. [112]’s work is of special inter-
est as it is the first to adapt neural networks in pseudo-relevance feedback. Their neural network
estimates the relevance of a document using pseudo-relevance feedback documents as evidence
in addition to the original query.

FIELD-BASED RETRIEVAL
Our focus is on integrating field-based information and relevance modeling. Thus, we briefly

review commonly used field-based retrieval methods.

BM25F. BM25F extends BM25 (Section 2.2.4) by incorporating field information directly into
the ranking function. Robertson et al. [167] proposed to boost the weights of terms that also
appeared in fields. Zaragoza et al. [221] combined the normalized weighted term frequency to
produce the BM25F document scoring function:

TFpseudo (D: t)

Scoreppasp(Q, D) = -IDF(t)
2 te;D kl + TFpseudo (Ds t)
TF¢(D, t)
TFpseudo (D,t) = Z Wf : u Lens (D) (3.5)
f 1_Bf+Bf.(Angenf)
N — DF(t)+0.5

IDF(t) = log( )

DF(t)+0.5
Same as in BM25, k; is a hyperparameter, N is the total number of documents in the collection,
DF(t) is the document frequency of t. In addition, this model introduces more field-specific pa-
rameters and functions. By and Wy are field-specific hyperparameters to control the contributions
of different fields, TF¢(D, t) is the term frequency of ¢ in the field f of document D. The length
normalization also happens at the field level. Len¢(D) denote the length of field f in document
D; AvgLens denote the average length of field f in the collection.

BM25F uses pseudo term frequency instead of the common term frequency. The pseudo term
frequency TFyseudo (D, t) incorporates field information by assigning different weights to the field
term frequencies TF7(D, t).

+ 63
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FSDM. Fielded Sequential Dependence Model (FSDM) [227] is another retrieval technique for
Web documents [69]. The model extends SDM (Sec 2.2.6) to fields. FSDM estimates the unigram,
bigram, and biterm language models from document fields respectively and interpolates their
probabilities.

Scorerspm(Q, D) = Z Ay 1Og Z Punigram(qi|D> f)+
qi€Q f
Z AG 10g Z Pbigram(qi,i+1 |D’ f)+ (3.6)
qi,ir1€Q f

Z At log Z Pbiterm(qi,i+1 |D, f)
qi,i+1€Q f

Field-Based Language Models. Ogilvie et al. [150] used fields as document representations in
the query likelihood model:

Scorepm(Q, D) =log P(Q|D)

- Z log Z WP (qlD, f) (3.7)
q€Q f

P(Q|D) is the probability of generating Q’s terms by a language model induced from document
D; P(q|f, D) is the probability assigned to term q by a language model induced from field f in D;
Wy is f°s weight.

Kim and Croft [99], as us, used relevance models induced from fields. However, a significant
fundamental difference with our work is that the relevance models were not used to directly score
fields or the entire document as implied by the generative theory for relevance. Rather, the rele-
vance models were used to assign a weight W ; for each field f with respect to each query term
t € Q. These weights were then used in the query-likelihood retrieval model from Equation 3.7 in-
stead of Wy which is the same weight for all query terms with respect to f. Specifically, Wr ; is the
normalized probability assigned to term ¢ by a relevance language model induced from field f of
top-retrieved documents; normalization is with respect to all fields. Thus, the suggested retrieval
model is still based on scoring a query w.r.t. a field using the surface-level similarity between the
two. In contrast, our models try to alleviate the vocabulary mismatch problem incurred by such
scoring by using relevance models to score the fields. We note that using relevance-model-based
field weights in our models is an interesting avenue for future work.

Neural Ranking Models with Fields. Zamani et al. [220] were also motivated by the idea
that incorporating document fields can lead to more accurate document representation. They
focused on representing the document in a latent vector space which can be further used by neu-
ral ranking models while our work focuses on inducing a more accurate relevance model. Their
proposed NRM-F framework hierarchically aggregates field information into a final document
representations as shown in Figure 3.3. They use multiple convolution layers to aggregate field
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n-grams into an instance representation, and then take the average of multiple instances for a
field representation, and finally concatenate multiple fields for the document representation.

document [ [ [ ]

concatenate

field 1 |:|: field 2 :|:|
average average
instance 1 instance 2 instance 1 instance 2
n-gram n-gram n-gram n-gram

Figure 3.3: NRM-F aggregates field information for document representations.

3.3 APPROACH: RELEVANCE MODELS WITH FIELDS

In this section, we present our methods that integrate field-based information and relevance mod-
eling. The first method induces relevance models from fields and scores the fields independently.
The second method scores fields using a relevance model induced from the entire document.

3.3.1 FIELD-BASED RELEVANCE MODELS

We extend Eq 3.4 by inducing relevance models from document fields f independently:

] P(QIf.D)
Prasse(wlf. R) = AP(w|Q) + (1 - 2) DZ;) PO D g QI D)

(3.8)

where P(w|f, D), the probability assigned to term w by a language model induced from field f
in document D, is estimated as explained below, and P(Q|f, D) = [],,c0 P(w|f, D).

To estimate P(w|f, D), we should account for the fact that fields are short, and hence, the
sparsity problem is exacerbated. For example, the title and heading fields are usually much shorter
than the document body. For ClueWeb09B collection, the average length of title, heading, and
body are 7.22, 27.94, and 702.19 terms respectively. Thus, we use a double smoothing approach,
where the maximum likelihood estimate (MLE) with respect to a field is Dirichlet smoothed with
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a linear combination (Jelinek-Mercer) of field-specific and non-field-specific collection MLEs:

Cufp +p(BEL +(1- B i)
P(w|f,D) = IDljlw Ll (3.9)

Cw,f,D> Cw,f and c,, are the counts of w in field f of D, in all fields f in the corpus documents,
and in all fields in the corpus; |[Dy| is the length of f in D; [Cy| is the sum of lengths of fields
f in all documents; and, |C| is the number of term occurrences in the corpus; § and y are free
parameters.

To score document D with respect to query Q, we interpolate the minus cross entropy scores
of applying the field-based relevance models from Eq 3.8 independently on each field:

Scorermsr(Q,D) = > Wy > Prusr(wlf, R) log P(wlf, D). (3.10)
f weQ

The field weights, Wy, are set using cross-validation.

APPLYING RELEVANCE MODELS ON DOCUMENT FIELDS

The method presented above is based on scoring a field using a relevance model induced from
the field. Still, fields are short and hence, the induced relevance models might not be robust.
Hence, we consider a method which uses a relevance model induced from the entire document
(Prms(-|R) from Eq 3.4) to score each of the document fields. Then, as in Eq 3.10, the scores are
linearly interpolated:

Scorepmsr(Q.D) = ) Wy > Prs(wlR) log P(w|f. D). (3.11)

f wWEW

EXPERIMENTS

COLLECTIONS AND FIELDS

Our experiments are run on the ClueWeb09B collection which contains around 50 million English
web pages. We use Indri! 5.12 for indexing, and apply the Krovetz stemmer to both documents
and queries. Note that stopwords are removed from the query only as stopwords in the documents
can have an important influence on the relevance models being induced.

We investigated three fields - title, heading and body. Although inlink is a field commonly
used in other studies, we omit results for inlink, as our preliminary results show that including
inlink data in the collection can have unexpected consequences. More specifically, Indri and sev-
eral other systems append inlink data from other documents into the linked document, which can
change the statistical properties of a document with many inlinks significantly. Our experiments

Thttps://www.lemurproject.org/indri.php
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show that this destabilizes the relevance models being induced. We leave this unexpected finding
to future work as it is an orthogonal problem to the one we wish to explore in this chapter. Note
that, in our experiments, heading is part of body as it is an aggregation of the H1, H2, H3 and H4
HTML tags which are inside the body tag. We believe it might also contain useful information
that can be exploited independently of the body.

3.4.2 BASELINES

We used three types of existing retrieval frameworks as baselines: (1) query likelihood (QL) and
a weighted linear combination of query likelihood over fields (QLLF); see Eq. 3.7 (ii) BM25 and
BM25F; and (iii) SDM and FSDM. For QL, the Dirichlet smoothing parameter y is set to 2500.
For QLLF, p is 10, 100, 2500 for title, heading, and body and the field weights are 0.2, 0.1, 0.7 re-
spectively. We implemented BM25F [221] (Section 4.1 of the original paper) in Indri, and followed
their approach to optimize the parameter weights for {title, heading, body}. The implementation
has been made publicly available?. The weights were obtained by averaging across a 5-fold cross
validation. First we optimized By for each field independently. K1 was then optimized using By
from the previous step. Finally, Wy,q, = 1 was fixed, and Wy;;, and Wheaqing Were swept. The final
parameter choices for ClueWeb09B were K; = 1.02, title (Bf = 0.36, Wy = 9, 2), body (Bf = 0.32,
Wy = 2), and heading (Bf = 0.16, Wy = 1). For FSDM, we used the configuration from Moham-
mad et al. [136]: the title, heading and body weights were 0.2, 0.05 and 0.75, respectively. Both
ordered and unordered bigram features are only applied over the body field, each of which has
a weight of 0.1, whereas the unigram feature of body has a 0.8 weight. Post-hoc spam filtering®
is applied to all runs with a threshold of 50. Finally, we retain the top 1,000 documents for each
ranked list for evaluation. Note that this would affect direct MAP or NDCG comparisons with
previous TREC Web Track runs as these were scored over the top 10,000 documents.

3.4.3 EXPERIMENTAL SETUP

An initial list was retrieved using query likelihood with Dirichlet smoothing and p = 2500. For
relevance modeling, we adopted the reranking approach of Diaz [58] who showed that rerank-
ing is as effective as retrieval over the entire collection for RM3. As in Equation 3.8, P(Q|f, D)
was used instead of P(Q|D) for relevance modeling. Thus, the document list was reranked by
title, heading, and body query likelihood scores, and the top 50 scored fields were used for rele-
vance modeling independently. Before reranking, we clipped the relevance models for 25 or 50
terms and re-normalized term weights. Then the 1,000 documents were reranked with RM3 over
fields for the three resulting lists. Document scores from the three ranked lists were then linearly
combined to produce the final ranking. A ten-fold cross validation was performed for tuning the
relevance model clipping (number of terms) and RM3 query weights.

2https://github.com/binshengliu/bm25f

Shttps://plg.uwaterloo.ca/~gvcormac/clueweb09spam
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Title ( Title
Induce RM from Heading —p» §g(r)lre < Heading
Body Body
\

.
Title

Induce RM from Document — g §((:)(r)1re <{ Heading

Body
~
Figure 3.4: Experimental naming rules.

Table 3.2: A summary of methods developed in this work. The source column refers to where
relevance models are induced. The target column refers to where relevance models are applied.

Method  Source Target

RMFLF  Allfields  All fields (weighted sum)
RMTST Title Title

RMHSH Headings Headings

RMBSB  Body Body

RMDLF Document All fields (weighted sum)
RMDST Document Title

RMDSH Document Headings

RMDSB Document Body

Naming followed the rules outlined in Figure 3.4. All names are listed in Table 3.2. RMTST is
a relevance model induced from the titles of a rank list, and used to rerank the list by scoring the
title field. A linear combination of RMTST, RMHSH, and RMBSB is named as RMFLF. If we
induce relevance models from documents, and rerank documents by title, we name it RMDST.
Finally, the linear combination of scores of RMDST, RMDSH, and RMDSB is called RMDLF.

EXPERIMENTAL RESULTS

Field-Based Models for Document Retrieval. First we consider the impact of field infor-
mation on the retrieval effectiveness in Table 3.3. We can observe a consistent trend for all re-
trieval methods without relevance modeling: field information improves early precision. For P@5
and NDCG@20, statistically significant differences are observed, except for SDM and FSDM. Al-
though slight AP improvements are observed in Table 3.3, the results are not significant.
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Table 3.3: Effectiveness of field-based retrieval methods on ClueWeb09B. A pairwise, two-tailed
t-test was performed between a non-field model (BM25, SDM, QL, and RM3) and the correspond-
ing extended field-based model. A 1 denotes significance at p < 0.05.

Name MAP P@5 NDCG@20

BM25 0.196 0.359 0.234
BM25F 0.203 0.401F 0.256F

SDM 0.210 0.366 0.253
FSDM 0.200 0.3987 0.256

QL 0.196 0.347 0.238
QLLF 0.203  0.3987 0.256F

RM3 0.205 0.378 0.244
RMFLF  0.198 0.420F 0.257
RMDLF 0.197 0.420F 0.252

Next, we consider the relevance modeling based methods: RM3, RMFLF and RMDLF, which
follow a similar trend as the methods without relevance modeling: early precision benefits from
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incorporating field information, but the improvements are not statistically significant for NDCG@20

or AP. The early precision of the relevance model approaches is also better than that of the base-
lines. In general, the results shown in Table 3.3 suggest that fields in documents can provide new
relevance signals to some extent, and integrating the fields into existing retrieval models im-
proves retrieval effectiveness; but the improvements are somewhat volatile depending on what
is being measured.

Field-Based Retrieval and Relevance Modelling. Finally, we explore if the field-based re-
trieval methods can be further improved using relevance modeling techniques. In order to gain a
better understanding, we conducted experiments using two different settings: (a) a PRF setting,
where pseudo-relevance feedback documents are used; and (b) an oracle setting, in which the
first five relevant (by qrel) documents from the initial list are used. As we showed in Table 3.3,
using a linearly combined field-based relevance models improves early precision significantly,
and we further analyze the effectiveness for each field independently now.

As described in Section 3.3, we induce relevance models using different sources: (i) the fields
themselves; and (ii) the entire document. We consider the methods from the RMFLF and RMDLF
family. The trends for both categories are shown under PRF Setting in Table 3.4. The body field
is more effective than either heading or title fields, the title is slightly more effective than the
heading field, and a linear combination of all three methods provides the greatest effectiveness
improvement.
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Table 3.4: Decomposition of field-based relevance modeling for both PRF and the oracle settings
on ClueWeb09B. A pairwise, two-tailed t-test was performed between each model and RM3. A §
denotes significance at p < 0.05.

Field PRF Setting Oracle Setting
Wy MAP P@5 NDCG@20 Wy MAP P@5 NDCG@20
RM3 - - 0.205 0.378 0.244 - 0.298 0.678 0.445

RMTST 0.1 0.122F 0.265F 0.1517 0.2 0.2567 0.646 0.432
RMFLF RMHSH 0.1 0.1101 0.2467F 0.137F 0.1 0.2067 0.618F 0.393F
RMBSB 0.8 0.189f 0.391 0.234 0.7 0.2771 0.674 0.438
Linear - 0.198 0.4207 0.257 - 0.293 0.7327 0.479%

RMDST 0.2 0.130f 0.2777 0.159% 0.1 0.1527 0.296% 0.200F
RMDLF RMDSH 0.1 0.1047 0.248F 0.1367 0.1 0.1267 0.3087 0.1747F
RMDSB 0.7 0.187f 0.380 0.231F 0.8 0.2667 0.6407 0.4067F
Linear - 0.197 0.420F 0.252 - 0.2767 0.656 0.4177

When constructing relevance models based on the entire document and applying the con-
structed model to score each field (RMDLF), there are some differences from RMFLF, but the
interpolated scores (Linear) perform very similar, and not significantly different.

The effectiveness of using true relevant documents to construct relevance models is shown
under Oracle Setting in Table 3.4. This set of experiments reveals the potential effectiveness gains
we might achieve using relevance modeling over fields. We observe that, if we apply a relevance
model induced from the entire document to each field, system effectiveness is degraded. This
confirms the observation made in the PRF experiment. More importantly, RMFLF outperforms
RMDLF which suggests that inducing relevance models from fields instead of documents is a
promising approach that we do not yet understand how to exploit. Experimental results of the
oracle settings confirm that applying relevance modeling techniques can significantly improve
the performance of field-based retrieval methods, particularly for early precision metrics.

Per-Query Performance Breakdown. Inorder to better understand the performance patterns,
we performed a failure analysis for RMFLF on a per-query basis, as shown in Figure 3.5 (PRF
setting) and Figure 3.6 (Oracle setting). In both instances we can see that the two field based
methods, RMTST and RMHSH, improve performance on tail queries where RM3 and QL have
low NDCG@20 scores. When considering the PRF setting and the 25% worst-performing queries
for RM3, 58% and 44% can be improved by using RMTST and RMHSH, respectively. In an oracle
setting, 44% and 38% of queries among the worst 25% RM3 tail queries are improved. However,
none of the current field-based relevance models are robust for all queries, and the performance
can be worse than either QL or non-field-based standard RM3.
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Figure 3.5: Performance breakdown for RMFLF methods on a per-query basis in an PRF setting.
The evaluation metric is NDCG@20 and all topics are organized w.r.t. the RM3 methods. The
“RM” means RM3, the “H” means RMHSH and the “T” means RMTST method.
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Figure 3.6: Performance breakdown for RMFLF methods on a per-query basis in an oracle set-
ting. The evaluation metric is NDCG@20 and all topics are organized w.r.t. the RM3 methods.
The “RM” means RM3, the “H” means RMHSH and the “T” means RMTST method.
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3.5

3.5.1

Summary. We can clearly see that incorporating fields can produce modest improvements for
a variety of existing models. Our field-based relevance models also make similar improvements
over traditional relevance models. However, these improvements are mostly observed on early
precision and are not consistently over other metrics. Can we do more? What is possible if we
could rewrite queries to better represent the information need? In the next section we will per-
form a comparative analysis using rewritten queries.

ANALYZING HUMAN AND AUTOMATIC QUERIES

The distinction between a query and the underlying information need represented by the query
has been an essential component of Information Retrieval research for more than half a century.
Many factors influence the effectiveness of a keyword query, and small reformulations can have
a substantial impact on the performance.

Cummins et al. [49] have explored the effectiveness gap between human query formulations
and automatically generated queries with a vocabulary limited to the description and narrative
of TREC topics. Their experiments show that title queries can be largely improved by human
rewritten queries. They also used a greedy algorithm to examine the upper bound of queries
generated from the limited vocabulary. The optimal queries are more than twice that of the av-
erage effectiveness of human beings, highlighting the potential of query rewriting.

Recent work on user query variations have also renewed interest in this fundamental IR
problem. Bailey et al. [9] have collected query variations through crowdwourding, in order to
study the variability of users. Following their work, Benham and Culpepper [17] found query
variations can not only provide effectiveness improvements but also improve the robustness of a
search system. However, manually curated collections of queries do not necessarily translate to
performance improvements in a production setting where related queries discovery must some-
how be operationalized. In this section, we compare user query variations (UQV100) released
by Bailey et al. [9] with automatically generated queries from Bing search logs, to identify po-
tential gaps in automatic query generation and shed light on future work. Our findings clearly
show that automatically generating queries can improve the representation of the information
need. At the same time, their gaps motivate further research along the direction of query gen-
eration. Concretely, we explore the following questions: 1. Can automatically generated query
variations be as effective for retrieval as carefully crafted human query formulations? 2. What
are the similarities and differences between the variations being produced?

COMPARISON METHOD

First, query likelihood retrieval is performed using each query variation over the corresponding
document collections, and then AP (average precision) is computed using trec_eval. Every query
variation with a 0 AP was dropped (on average 2 queries were dropped per-topic from the human
set using this methodology, and 4 from the automatic set). This is consistent with previous work
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on UQVs [10, 17]. The goal of our work is to better understand how variations of similar quality
that were manually generated by humans compare to automatically generated ones.

To address our first question, we gradually remove the bottom-performing x% of the Bing
queries for a topic, in order to find a set of automaticly generated (selected) queries that are of
comparable effectiveness quality to the human curated set. The equivalence between the two
sets of queries is determined based on the median queries from the human reference sets, and
the median of the current set of pruned automatic queries. A paired, two-sided t-test and a two
one-sided test (TOST) can be used to identify the most appropriate cutoff threshold. TOST is com-
monly used in the medical community to test for statistical non-inferiority [206]. More specifi-
cally, a t-test tests for differences while a TOST test for equivalence. Once a cutoff is identified
in the automatic collection which results in a similar effectiveness to the human collection, the
two query sets are then exhaustively compared and contrasted.

In order to address the second research question, we explore the similarity between queries
for a topic (Intra) and also compare similarity between the queries for Human and Bing (Inter). We
use Jaccard similarity and Rank-Biased Overlap (RBO) [208] to do our intra- and inter- similarity
comparisons, which is discussed more in the next section.

Document Collections and Retrieval Models. We use two test collections in our experi-
ments: Robust04 and ClueWeb12B document collections. The Indri toolkit is used for all re-
trieval experiments, and stopwords were pruned from queries at runtime. Across all experiments,
Krovetz stemming is applied to queries and documents, and query likelihood model [190] (Dirich-
let smoothed document language model, i = 2500) was used for retrieval.

Query Variations. Instead of using title queries as originally provided by TREC, for each topic,
we consider two sets of query variants. The first set were manually curated, human query varia-
tions created through crowdsourcing experiments. The second set were generated automatically
using a random walk on a click graph derived from query logs in the Bing search engine. Human
generated query variations for both ClueWeb12B and Robust04 are publicly available, and have
been used in several recent research papers. 4°

The automatic query variants are generated by using a bipartite query—URL click graph taken
from a 10% sample of Bing click data over several months in 2018. Note that the automatic vari-
ants are queries selected from the log as those presumably most related to the query at hand.
Sheldon et al. [187] proposed a process to induce multiple query variations from a starting query
or description using the random walk model originally described by Craswell and Szummer [43].
Using a two-step forward walk produces queries that would be reached if the walk starts with
a single user query. Here we apply the same model, but use a two-step backward walk, which
tells us what queries were the likely starting point given that we ended at the user query. The
backwards walk model also performed better in the original paper [43], and produced the best

4https://culpepper.io/publications/robust-uqv.txt.gz
Shttp://dx.doi.org/10.4225/49/5726E597B8376
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results in our preliminary tests. We did not perform additional experiments to pick the best
hyper-parameters for the random walk, and leave this for future work. We note that for descrip-
tion queries, the query is very unlikely to occur in the graph, so temporary nodes were created
for each description query that was connected to any URLs found in the description query’s top-
50 Bing results. Note that the descriptions used for ClueWeb12B were the backstories developed
by Bailey et al. [9], and TREC descriptions were for Robust04 to ensure that the queries being
generated were directly comparable to the human-generated query sets.

As a result, on average, there are around 16 automatic query variations and 12 human-
generated query variations for Robust04; for ClueWeb12B, there are around 25 automatic and
39 manual query variations available. There are in total 100 topics for ClueWeb12B, and 249 top-
ics for Robust04. For automatic variants, none were produced for three topics in Robust04, and
so these were treated as empty queries in all comparisons to ensure that our results are directly
comparable to previous results reported for Robust04.

RESULTS AND FINDINGS

Table 3.5: Retrieval effectiveness of (fielded) relevance models on ClueWeb12B and Robust04. To
find the best parameters, grid search is carried out with docs € {10, 25,50}, terms € {10, 25,50},
orig_weight € {0.1,0.3,0.5,0.7,0.9}. Fielded relevance models are applied on title, heading, in-
link, and body fields with weights 0.1, 0.1, 0.1, and 0.7 respectively. Robust04 has limited field
information (e.g. only a title field “THE JOURNAL (House - April 01, 1993)”) so field relevance
models are not applied on it. ¥ means p < 0.05 in the t-test compared to title query.

ClueWeb12B Robust04
MAP NDCG@10 RBP@0.95 MAP NDCG@10 RBP@0.95

Title 0.201 0.192 0.360 +0.213  0.247 0.426 0.308 +0.035
RM3 Best  0.203 0.190 0.359 +0.224  0.266F 0.429 0.321 +0.0297
FRM3 Best  0.204 0.196 0.363 +0.217 - - -

Retrieval Performance of Relevance Models. Table 3.5 shows the results of applying tra-
ditional relevance models and our fielded relevance models as a reference point. Significant
improvements are observed on Robust04 but not on ClueWeb12B. This is in line with other
work [123] that relevance models tend to work less effectively on ClueWeb12B, perhaps because
ClueWeb12B is made up of web documents and is more noisy. Another difficulty of relevance
models is parameter tuning. Billerbeck and Zobel [23] have shown that the best parameters of the
BM25-based query expansion [171] varies wildly at the query level. This is also true for relevance
models. If we were able to find the optimal parameters for every single query, on ClueWeb09B
we could reach an MAP score of 0.214, and on Robust04 we could reach an MAP score of 0.284.
Table 3.6 shows the statistics of the optimal choices of two parameters (the number of docu-
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Table 3.6: Query-level optimal parameters of relevance models.

(a) ClueWeb09B. (b) Robust04.
# documents # documents
10 25 50 10 25 50
10 12 6 18 10 35 17 17
#terms 25 6 5 13 #terms 25 25 17 13
50 20 8 13 50 71 30 25

ments and the number of terms) at the query level. For example, 12 queries in ClueWeb12B need
#docs = 10 and #terms = 10 for relevance models to perform optimally. The table clearly shows
the diversity and difficulty in query-level parameter tuning. Importantly, even in such an optimal
condition, the improvements are still small compared to what is possible with rewriting queries
as shown in Table 3.7.

Table 3.7: Retrieval effectiveness of automatic query variations and human query variations. Hu-
man represents the median value of the human set. For Bing, median performance is reported for
different filtering thresholds of bottom-performing queries. For example, Bing 0.5 means queries
in the bottom 50% are filtered out. ¥ and f mean p < 0.05 in the t-test and TOST test (AAP = 0.05)
compared to title query, respectively. h and b mean p < 0.05 in the t-test compared to human
best and bing best respectively.

Query Set ClueWeb12B Robust04
MAP NDCG@10 RBP@0.95 MAP NDCG@10 RBP@0.95
Title 0.201 0.192 0.360 +0.213 0.247 0.426 0.308 +0.035

Human 0.178 0.190 0.351 +0.185 0.239 0.421 0.294 +0.124

Bing 0.0 0.1037 0.1207F 0.230 +0.495F  0.1447 0.2547F 0.179 +0.3647
Bing 0.1 0.118F 0.1387F 0.247 +0.4451  0.1607 0.2967F 0.204 +0.3257
Bing 0.3 0.1417 0.1467 0.284 +0.395F  0.1827 0.3377 0.226 +0.2897
Bing 0.5 0.166% 0.1923% 0.323 +0.313F 0.2017 0.3587F 0.248 +0.2497
Bing 0.7 0.194F 0.210 0.366 +0.271 0.228% 0.402 0.281 +0.216%
Bing 0.9 0.226F 0.2437F 0.407 +0.2181  0.2737F 0.4667F 0.330 +0.1747

Human Best  0.286 0.304 0.501 +0.118  0.373 0.604 0.422 +0.078
Bing Best  0.239 0.252 0.428 +0.215  0.282 0.481 0.338 +0.170
Joint Best  0.288°  0.303”  0.503 +0.120%  0.389%%  0.621"%  0.436 +0.081""

Retrieval Performance of Query Variations. We show results for the automatic variations
at different filtering cutoffs in Table 3.7. On average, both tests suggest that the (median) AP
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effectiveness of automatic and human variants is statistically indistinguishable after pruning
the bottom 50% queries in ClueWeb12B. We see a similar trend for Robust04 when pruning the
bottom 70%. This observation is not surprising: Table 3.7 shows that the human variations for
Robust04 are of higher quality than those for ClueWeb12B. Human variants for Robust04 were
created by search domain experts, while those for ClueWeb12B were created through an online
crowdsourcing experiment.

The most important take-away message from this comparison is that small perturbations
of a query can have a significant impact on performance. For example, the original TREC title
query for Bing-ROBUST is the best variant in terms of MAP for 73 of 249 queries (29%), and for
Bing-CW12B, 14 of 100 queries. For human variants, it is 23 of 249, and 0 of 100 respectively.
So, even in our first attempt, the original TREC title query is superior for only 1/3 of the topics.
Furthermore, fusion of variants consistently outperforms a single query, even when very few
variants are available [10, 17]. We do not explore this further here due to space limitations.

To answer our first question, our results show that automatic queries may be able to achieve a
similar performance level to human generated ones, but a gap still exists in the percentage of low
quality variants being induced through our automatic generation approach. Moreover, we can
not ignore the fact that the residuals of RBP@0.95 are much larger than anticipated on both sets
of queries, indicating the high level of uncertainties in our comparison, and lower than expected
judgment coverage in both collections.

Topic Differences. Retrieval effectiveness varies on a per-topic basis, as do the query variations
themselves, and these differences can be observed directly in Figure 3.7 and Figure 3.8, where we
plot performance of pruned automatic variations and human variations relative to the median
query of all known variants for that collection. We also show where the original TREC title query
performance lies for that topic. As we can see, variant performance on both sets varies widely for
nearly every topic. Since Figure 3.7 and Figure 3.8 suggest that there are large quality differences
between query variations at the topic level, the relative differences can be further quantified
using the drop rate shown in Figure 3.9, which is the percentage of query variations that must be
pruned per-topic from the automatic set to make the two sets statistically indistinguishable.

We can see that, although on average, ClueWeb12B drops 53.8% automatic queries and Ro-
bust04 drops 61.9% to be similar to human variations, this percentage actually varies signifi-
cantly per-topic: 13 topics on ClueWeb12B and 30 topics on Robust04 in the automatic set out-
perform the human reference set, while 12 topics on ClueWeb12B and 74 topics on Robust04
cannot achieve similar performance to the human benchmark. This is an interesting observa-
tion for several reasons. First it suggests that both approaches can produce effective queries - in
fact queries that are more effective for the information need than previously known, i.e., TREC
topic titles. It also suggests that despite similar overall performance, the two methods are capa-
ble of producing remarkably different query variations. This motivates us to further explore the
diversity exhibited by the two sets.
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Figure 3.7: Per-topic comparisons on ClueWeb12B. Automatic query variations are in the pruned
set, where the pruning percentages are 50% and 70% on ClueWeb12B and Robust04, respectively.

Term-Level Similarity. We begin to answer our second research question by exploring the
similarity at the term-level. To accomplish this, we first want to determine how many queries
were exactly duplicated in the human versus automatic query sets. On average, 2.7 queries match
in ClueWeb12B and 0.2 in Robust04, with at most 8 and 2 matches for any one topic respectively
in the two collections.

Next we extend our comparison intra-similarity: the similarity within each set of query vari-
ations. We measure the Jaccard similarity between the terms in the queries to further quantify
the overlap. As shown in Table 3.8, automatic query variations on ClueWeb12B exhibit a slightly
higher similarity than human variations on average per-topic — with similarities as high as 0.917
for some topics. However, Robust04 behaves differently. Here, the human generated query vari-
ations have a higher similarity. In addition, we also found that both sets of variations tend to be
quite similar to TREC title queries. This is perhaps not terribly surprising as TREC title queries
were formulated by topic originators, and the descriptions are simply an exposition of that intent.

+*
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Figure 3.8: Per-topic comparisons on Robust04. Automatic query variations are in the pruned
set, where the pruning percentages are 50% and 70% on ClueWeb12B and Robust04, respectively.

We also observed that automatic variations have a marginally higher similarity to title queries
on ClueWeb12B than for Robust04, which we hope to explore this further in future work.

Finally, we consider inter-similarity: the similarity between the automatic and human gen-
erated queries. The average inter-similarity scores shown in Table 3.8 suggest that the two sets
of queries also express the same information need in different ways, with an average similar-
ity of 0.299 and 0.190 on ClueWeb12B and Robust04, respectively. Again, there is a difference
between the two test collections: the set of human queries and automatic queries are more sim-
ilar on ClueWeb12B than on Robust04, given that the maximum similarity can reach 0.971 on
ClueWeb12B, but only 0.600 on Robust04. It is worth noting that the inter-similarity is lower
than intra-similarity on both collections, which reinforces the inherent differences of the two
sets in expressing the same information need.

Comparing Retrieval Similarities. In order to gain a better understanding of the differences
between the two sets of queries, we turn now to study retrieval consistency measured with RBO,
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Figure 3.9: Per-topic drop rate of automatic query variations. The x-axis is the drop rate and the
y-axis is the number of dropped variants.

p = 0.9 [208], as shown in Table 3.9, which measures similarities between two ranked retrieval
lists. In general, the retrieval similarity is correlated with the term similarity in Table 3.8, except
for Robust04, where automatic queries have a slightly lower level of query-level similarity but
a slightly higher RBO score. There could be many reasons for this discrepancy, for example, the
query length, which differs in the two collections. When considering the inter-set similarity, we
observe a very low agreement between the two sets, implying that documents retrieved using
the two sets of variants are in general highly diverse.

Example Queries. For some topics, human variants and Bing variants are superior in capturing
different aspects of the information need, often complementing each other. We now perform a
qualitative analysis for a few interesting topics on where the two sets of variants behave very
differently. We found that human variants are better at addressing information needs that involve
rare words or common misspellings. For Robust04 topic 301 “agoraphobia” and topic 677 “lean-
ing tower pisa”, human variants outperform Bing variants, as most human variants contain the

+ 79
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Table 3.8: Query jaccard similarity: within a query set (Intra), between the query sets (Inter) and
with TREC’s topic Title.

Set Intra Sim. Inter Sim. Sim. to Title

Avg Max Avg Max Avg Max

Bing  0.372 0917 0436 0.825

ClueWeb12B 1 an 0331 0820 %2 ®9701 0407 0916
Bing  0.299 0.699 0.286 0.524

Robust04 Human 0312 0730 220 0600 oaac 4701

Table 3.9: Retrieval consistency measured using RBO.

Set Intra Sim. Inter Sim. Sim. to Title
Avg Max Avg Max Avg Max
B 0.270 1.000 0.346  1.000
ClueWeb12B 1 an 0162 1000 018 1090 go0s 1000
B 0382  1.000 0329 1.000

4 205 1.
Robust0 Human 0233 1.000 2% 1000 5205 1000

correct word “agoraphobia” and “pisa”, while Bing variants rarely contain the title query or con-
tain misspelling such as “pizza”. The difference stems from the generation methods for the two
sets. Human variants were collected through crowdsourcing (or domain experts), during which
workers were able to see the exact keyword in the information need description and then pro-
vide correctly spelled queries. Conversely, Bing variants can show a deeper understanding and
capture domain knowledge as they are induced from real user queries. For example, Robust04
Topic 372 is “native american casino”. Human variants were “native american casino gambling”,
“tribe casino gambling”, and “indigenous peoples america casino gambling” which are just syn-
onyms of the title query, while Bing variants included “indian casino”, “500 nations”, and “igra”
which have very high specificity. Bing variants also tend to be more natural queries than human
variants as crowdsourcing workers can be unconsciously influenced by the description when
choosing query terms. Topic 658 is “teenage pregnancy” which also appears in many human
variants, but Bing variants usually contain “teen pregnancy” and yielded significantly higher AP
scores. So it would appear that both automatic and human-based approaches can be used to pro-
duce query variations effectively, but can also result in queries with very different properties.
Both approaches complement each other in unexpected ways, which becomes even more appar-
ent when considering the “Best” human, Bing, and Combined effectiveness results shown at the
bottom of Table 3.7.
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3.6 SUMMARY

In this chapter, we first examined three techniques for using field information in web documents.
They all outperform their non-field counterparts in terms of early precision. We then incorpo-
rated field information into relevance modeling, and observed similar trends — early precision is
significantly improved. Our oracle experiments suggest that fields could be an important source
of information that might be further exploited in relevance modeling. The most interesting find-
ing is that difficult queries are improved using field-based relevance modeling.

However, relevance models are induced based on simple statistics such as term frequen-
cies. While the technique is simple and effective, it is unable to capture more complex language
properties due to the bag-of-words representations of documents. Leveraging word orders can
substantially improve a ranking model’s ability in deciding the relevance between a query and
a document, shown by recent neural ranking methods fine-tuned on neural language models.
Moreover, the queries generated by relevance models are also bag-of-words and thus are unin-
terpretable. These shortcomings motivate us to further explore using neural language models
to capture linguistic knowledge on the input end and generate human-readable queries on the
output end.

To understand the quality of automatic techniques used in commercial search engines, we
also compared and contrasted automatically generated queries and human written queries for a
single information need on two different commonly used test collections. Our analysis confirmed
that relevance models are less effective on web collections. When they work well, the overall
improvements are still not comparable to completely rewriting a query, using either automatic
or human variations. We showed that while both automatically generated and human written
queries can achieve comparable performance, subtle differences between the queries being cre-
ated still exist. An important take-away message from our empirical analysis is that remarkable
effectiveness gains are still possible based purely on the query formulation of an information
need, either in the automatic and human settings. Automatic query generation is technically vi-
able and have their own strength, but they still require a lot of efforts to achieve human level
quality.






4 GENERATING EFFECTIVE NATURAL
LANGUAGE QUERIES

4.1 INTRODUCTION

Effective query (re-)formulation is a fundamental research problem which has been studied ex-
tensively in Information Retrieval (IR) for several decades. While many users are surprisingly
good at formulating short keyword queries to find relevant documents to satisfy their informa-
tion needs, automated methods capable of generating similarly “good” queries remain an elusive
research goal. In Chapter 3, we discussed relevance modeling [106] which can automatically gen-
erate/expand queries by sampling words from a language model induced from pseudo-relevant
documents. But simple and powerful relevance modeling has some disadvantages that limit its
performance. First, it is often implemented as a unigram model which does not take into consider-
ation term dependencies. Useful information to understanding more complex language elements
such as pronouns and co-references is lost in the modeling process. While in theory relevance
models can be induced from n-grams, these approaches rarely show consistent performance im-
provements beyond their unigram counterparts. Second, relevance modeling is not efficient. The
generated queries often contain 20, 50, or even 100 terms, depending on the number of terms
parameter. As the number of terms grows, the time and resources required to process the queries
also increase correspondingly, making relevance modeling an expensive query optimization tech-
nique. Third, since relevance models do not consider term ordering, the generated queries are
not interpretable as they do not have any syntactical structure.

In this chapter, we explore using Transformers to generate queries. Before diving into the
details, we would like to re-think about what a good query is. A “good” query should be read-
able, capture core elements of the underlying information need, and be effective (find relevant
information in a target document collection — a collection which the user may have little or
no information about). From a user’s perspective, the query should also be short, informative,
and effective. That is, the user can easily rationalize word choices and intent of their query re-
formulations (or suggestions) in an information seeking session in order to achieve the best out-
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comes, and finding methods that are capable of mimicking this behavior can be used to improve
interactions between humans and machines.

This type of “good” query, also known as a transparent query [138], are easy to understand,
and positively influence retrieval performance for the users [101, 138, 197]. As noted by Mura-
matsu and Pratt [138], when a search system provides a conspicuous query rewriting process,
users have clues on how best to reformulate their own queries rather than trying to guess what a
system is doing surreptitiously. While previous work [138] describes how such a transformation
process might be operationalized, recent transformer-based models have shown substantial im-
provements when applied to human text generation and query effectiveness [51]. Transformers
are now readily available that contain deep linguistic capabilities (e.g. co-references) [35] which
were pretrained using web-scale text collections.

In this chapter, we revisit the problem of automatic query formulation from a similar angle
— document summarization. Remarkable progress has been made in the NLP community in text
summarization and Natural Language Generation (NLG) in the last five years, albeit with different
goals. More specifically, these new approaches generate human-readable text from documents
that capture the most salient points of the target document. However, the summary may not be
an effective query to find the original document or other similar but relevant documents in the
collection. In IR, generating queries to find a specific document is called the known-item finding
problem [4, 150], and can be formalized as the strong query problem [104]. A strong query by
definition is a query that uniquely identifies a document, and was originally explored for the
rank aggregation problem. Such queries are highly effective for document refinding tasks, and
provide a theoretical model that can also be adapted to model effectiveness for our key task —
generating effective queries for a collection. However, strong queries heavily favor rare terms
and often have no conceptual overlap with the user’s information need. So, a variation on this
problem is the focus in this chapter. The key goal is to impose additional linguistic constraints
to favor query formulations that are more human-readable.

A variation of this problem is the focus in this chapter, where we impose additional con-
straints that also capture important natural language properties to improve system performance.
The most effective solutions for this problem are commonly biased towards rare terms in the
queries generated, which are rarely representative of human generated queries, are not accurate
summaries of the document, and often not easily understandable. That is, they are effective but
not informative. More recently, transformer-based ranking models have become prevalent. Dai
and Callan [51] and Padaki et al. [152] have shown that for these transformer-based models, long
natural language queries often show higher performance than short keyword queries. This is in
line with transformers’ ability of capturing information from complex language. So, our goal is to
generate strong queries which are readable and informative. If a generated document summary
accurately captures the information need(s) satisfied by the document and is also a strong query,
dramatic improvements in query suggestion / reformulation tools would be possible in the future,
which have historically used user query logs and click graphs to make suggestions, rather than
statistical properties of the documents relative to the entire collection [28]. While not explored
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in the original work of Kumar et al. [104], the strong query problem can be easily extended to
maximize effectiveness when more than one relevant document exists. In such a scenario, the
model is conditioned using multiple query-document pairs.

Problem Formulation. Strong queries for a document are the shortest queries that rank a tar-
get document at the topmost position [104]. Strong queries can play an important role in under-
standing the performance of retrieval models, and can be used for a variety of related tasks, such
as plagiarism detection. We extend this important problem by adding two additional constraints:
(1) the queries should be informative; (2) the queries should not use esoteric terms (be easy to
understand). We will refer to this problem the strong natural language query problem (SNLQ).

Let M be a retrieval model and D be a target document. Formally, the problem studied in this
chapter is to construct a model to generate queries from a given document D: D +— Q, where
Q is a generated query such that: (1) M(Q, D) ranks D at the topmost position (2) Q should
be readable and (3) Q should also be informative to the user. Note that, our problem does not
necessarily require the shortest query as there is a tension between retrieval effectiveness and
quality of the summary, and short queries have the additional benefit of being more efficient to
process by a search engine.

Contributions.

+ We propose a novel query generation task — SNLQ. This task has the dual objective of
maximizing readability, as is common in natural language processing, and retrieval effec-
tiveness, which is often the main objective in information retrieval systems. That is, the
task improves transparency when reformulating a user query but also ensures that the
queries are effective when used for retrieval by the underlying search engine.

4+ Our solution combines Transformer-based abstractive summarization techniques and re-
inforcement learning over multiple objectives — summarization, informativeness, and re-
trieval effectiveness.

+ Experiments to empirically validate the quality of our new approach using the MS-MARCO
dataset show that we are able to leverage models learned from an abstractive summarizer
to generate effective and readable queries for any document in the collection. We also
consider how best to evaluate the quality of such queries, which can be very difficult to do
in an automated way.

4.2 RELATED WORK

There are four lines of work which are most closely related to our own: known-item finding,
query generation, document summarization and interpretability of query reformulation. In this
section, we discuss the connections between our work and the existing literature.
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4.2.1

4.2.2

KnowN-ITEM FINDING

Known-Item finding (or re-finding) is the task of re-finding a previously seen item. This is a
common behavior exhibited by frequent users of commercial web search engines [196]. These
observations motivated the work of Hauff et al. [80] who wished to explore this behavior fur-
ther in a laboratory environment, which is often difficult given the lack of personalized search
logs for privacy reasons. In order to construct their test collection, crowdsourcing and automatic
query generation approaches were combined to simulate user behavior. The automatic genera-
tion framework used in this work was initially proposed by Azzopardi and de Rijke [4] and con-
sisted three sampling-based methods: popular (POP), discriminative (DIS) and uniform, which
simulated the process of human generated re-finding queries with “false memory”. Follow-up
work by Azzopardi et al. [5] applied these models on six different languages to further validate
the effectiveness of these approaches. This work differs from the SNLQ problem in two ways:
(1) there were no guarantees of query informativeness, and (2) their goal was not to generate a
strong query which ranks the target document at the topmost position.

Improving search effectiveness of the known-item finding task has also been explored in past
work. The most relevant to our work is the strong query problem as proposed by Kumar et al.
[104]. A strong query is defined as the shortest query which ranks a document at the highest po-
sition. The task of strong query generation was reduced to the well-known NP-HARD set-cover
problem, which motivated their greedy algorithm solution, as is common for such problems. Ku-
mar et al. [104] concluded that a query length of less than four words is on average sufficient to
induce a strong query, but no restrictions were placed on term scarcity.

QUERY GENERATION

The task of query generation is commonly explored from two angles: 1. given a query and the
goal is to generate the alternatives; 2. given one or more documents, generate queries that are
effective. The former can be used for term suggestion [84], query reformulation [88], query pre-
diction [3] and query suggestion [25, 212]. Lee and Croft [107] explored generating queries from
user-selected text that can be used to search for related information. Nogueira et al. [148] and
Nogueira and Lin [146] used seq2seq models to generate queries to enrich short passages.

There are several approaches commonly used for query suggestion. For example, query log
mining [25, 187] or crowdsourcing [9]. Automatic query reformulation and often rely on user
interaction data and deep learning. For example, the approaches of Sordoni et al. [191] and Ah-
mad et al. [3] explored query reformation as a generative task for session-based retrieval, and
exploited user interaction information to iteratively improve quality. The user interaction data
(click information) is required by both approaches to accurately model contextual information.
We approach our problem differently: (i) we do not include user interaction information, (ii) our
goal is not to predict the “next query”, but to generate queries for any document in a collec-
tion. Our setting, which is to generate queries from a given document, can also be linked to the
large body of work on pseudo-relevance feedback (PRF) [106]. The work of Lee and Croft [107]
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is closely related to our problem, where the problem explored was query generation on text
passages selected by a user. They rely on phrase-based extractive summarization. Although this
work is clearly related, there are a few notable differences: (1) we do not use an extractive tech-
nique; (2) we also aim to generate a natural language query, instead of only extracting a phrase
directly from the original document; and (3) our problem setting also explores the importance
of informativeness. Indeed, extractive summarization techniques could easily be used within our
framework, but not explored here.

Query generation can also be cast as a machine translation (MT) problem [20] where a doc-
ument is “translated” to “query” in order to resolve vocabulary mismatching. The “Doc2query”
technique [148] uses a machine translation model to generate candidate queries based on a given
document. However, instead of regarding the generated queries as new reformulations of the
original user query, the queries are used to enrich the target document. This is a common tech-
nique used to learn question answering models as the overlap in terms found in the question
and the answer may be minimal. Nogueira et al. [148] showed that their approach dramatically
reduced vocabulary mismatches in the MS-MARCO passage retrieval task and showed that the
model could be improved further in follow-on work by applying an even more sophisticated lan-
guage model to the MT task Nogueira and Lin [146], Raffel et al. [164]. This work is relevant to
our problem setting in two ways: (1) Our goal is also query generation from a targeted document;
and (2) the generated queries should have properties similar to natural language text. Nogueira
et al. [148] do not explicitly optimize for readability or informativeness, but the quality of the
queries generated are consistently good when manually inspected by humans, and hence are
used as a baseline in our work.

4.2.3 ABSTRACTIVE SUMMARIZATION

Text summarization is the process of automatically condensing natural language text into another
succinct but semantically correct text representation without losing any of the key information
from the original. Current NLP approaches to this problem are generally categorized as being
abstractive or extractive. In this chapter, we focus primarily on abstractive summarization as
this provides greater flexibility in the generated text and the learned language model. Our pri-
mary goal is to automatically discover alternative phrases for query rewriting as well as finding
relevant documents that rely on alternative word choices. Recent advances in abstractive sum-
marization models, and more generally NLG model learned with attention-based transformers
are now comparable to humans (see for example [39, 61, 140]).

A related issue which has historically plagued NLG tasks is repeated phrase generation [157,
185]. This can now be mitigated by using pointer-generation [185] or intra-temporal attention
mechanisms [157]. Our work relies heavily on these and related abstractive summarization tech-
niques, but with an additional optimization goal — the generated summary of the document
should also be an effective query that can be used to easily refind the document in the collection.
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4.2.4 INTERPRETABILITY OF QUERY REFORMULATION

4.2.5

Interpretability has recently become a focus in the machine learning field, and has also been
explored in IR as search engines often apply ranking models in multiple stages of the retrieval
process. Several researchers have shown that improving the transparency and interpretability
of a search engine can help the user word a query for their targeted information need for more
effective retrieval [101, 138, 197]. Among this prior work, the “transparent query” proposed by
Muramatsu and Pratt [138] is the most similar to our own. The authors show that the users prefer
guidance during the query reformulation process, and a conspicuous system which provides
such techniques improves retrieval effectiveness and leads to higher user satisfaction. Instead of
providing explanations for each choice made by the search engine, our goal is to generate queries
that are easily interpretable by a user and that also improve the quality of the retrieval results.

REINFORCEMENT LEARNING FOR SEQ2SEQ

Reinforcement learning has been widely used for seq2seq tasks to address the exposure bias [165]
problem. Consider Figure 4.1a. When the model is being trained, it is only trained with ground
truth data, while at inference time, the model needs to condition on its own output which it
may have never seen during training, causing training-inference discrepancies. This problem is
known as the exposure bias. Ideally, we hope to minimize training-inference discrepancies so the
model generalizes well. In order to do so, we need to sample multiple generations during training
and provide training signals to the model as shown in Figure 4.1b.

Time Time

R R ) 606 8 0 e 8 e

(a) Teacher forcing only sees the ground-truth gener- (b) Reinforcement learning samples multiple genera-
ation trajectory, causing training-inference discrep- tion trajectories and the model has been trained with
ancies. more examples.

Figure 4.1: An illustration of exposure bias.

To alleviate the exposure bias problem, reinforcement learning is often used. During training,
a large number of generation samples are collected and evaluated. Depending on the quality,
the samples can provide positive or negative training signals to optimize the model towards
producing high-performance generations.
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4.3 METHODOLOGY

4.3.1 SYSTEM OVERVIEW

Stage 1: Supervised Learning Stage 2: Reinforcement Learning
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Figure 4.2: Model architecture of our proposed solution. First, documents are encoded (bottom of
figure), and then are processed by a decoder generator. The figure illustrates a typical transformer
in Fairseq [151], but any sequence-to-sequence model can be used. Stage 1 and stage 2 are trained
on different collections, one for summarization and one for retrieval. Stage 1 training is shown
in the top left pane where we take advantage of a summarization collection and maximize the
quality of the text generator. Stage 2 training is shown in the top right, where the model is
retrained using a document retrieval collection in order to optimize the retrieval effectiveness.

Figure 4.2 provides a high-level view of our system architecture. The only hard constraint
on the summarization model deployed is that it must be retrainable directly with Reinforcement
learning. We use a recent configuration of the Fairseq abstractive summarizer as described by
Ott et al. [151], but any state-of-the-art model could be used, as discussed later. The pace of new
abstractive summarization models being proposed makes it impossible to use the “best known”
model in our experiments as it changes daily on the major leader-boards.

We have adopted a two-stage training strategy in our framework. First we fine-tune a model
for the summarization task on a target collection. Once the model reliably generates high quality
summaries for documents in the collection, we further train the model for our second optimiza-
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4.3.2

tion goal: query effectiveness. The model is optimized to generate queries which rank the original
documents at the topmost positions using commonly used terms whenever possible.

We achieve the effectiveness goal through reinforcement learning as it enables us to optimize
non-differentiable targets directly. We cast the query generation problem as a contextual bandit
problem and uses policy gradient algorithm to optimize our model. We did not use the more
direct approach of training the two objectives (summarizer quality and ranking effectiveness)
jointly as two unrelated objectives may not converge. More specifically, we are faced with two
competing objectives which commonly rely on two different types of loss function. The readabil-
ity objective generates text capturing properties from the queries and collection and is as close
to the human-written ground truth as possible, while the effectiveness objective reweights term
choice to improve effectiveness.

Generally speaking, text generators often rely on encoder-decoder based architectures while
ranking models often rely on encoder based architectures. So combining the two objectives to
find an optimal solution is a challenging problem, and is not achievable by simply combining the
two objective loss functions and optimizing it combination directly.

The order of the two stages — supervised learning followed by reinforcement learning — is
also important. First stage training of the summarizer ensures that the query generator generates
high quality text snippets. Using reinforcement learning tasks for high-dimensional action spaces
are susceptible to “the curse of dimensionality” problem [22] which can prevent convergence
during training in certain circumstances [64, 218]. So, unless a properly trained summarization
model is used, the query generator will select terms from a random distribution over the entire
term vocabulary at each time step. Concretely, reinforcement learning is guided by the reward,
which would be zero for randomly selected terms, and produce no gradient. This is because
random terms do not capture real-world term dependencies and are not relevant to the source
document or the query, and so the model gets no reward. In our experiments, we observed that
the RL model did not converge until we introduced first stage training for the target collection.
So, the summarizer training stage is crucial as it provides the necessary contextual knowledge
between terms in a target document, and reduces the search space that the query generator must
explore.

SUMMARIZER

As discussed above, we use a configuration of the Fairseq abstractive summarizer as described by
Ott et al. [151] as our starting point for the summarization objective. As a point of reference, the
model trained achieves ROUGE-{1,2,L} scores of 41.34, 18.35, and 37.16, which are comparable
with the most effective abstractive summarization results available for the CNN/Dailymail col-
lection based on the current leaderboard for the collection. Fairseq uses a sequence-to-sequence
transformer model consisting of two parts, an encoder stack which encodes the input sequence,
and a decoder stack which generates sequences given the encoded information. The architecture
applies attention [201], with 6 stacked layers, and each layer contains an 8-head self-attention
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layer and a 2048 hidden-unit feed-forward network. We refer the readers to the Fairseq GitHub
repository! for further implementation details.

Note that we also adopt the widely used “teacher forcing” [210] method to train the model
for summarization, which minimizes the maximum-likelihood loss at each decoding step. In this
approach, the input token of the decoder is used as a ground truth token instead of the final token
predictions at training time. Formally, given a training pair (X, Y), where X is a document, and

Y ={y1,y2 -+ ,yn} is a ground-truth summary, the cross entropy loss is defined as:
n
L==>"1og P(t:lys, ¥z, ye-1,X) (4.1)
=1

At each time step, the output y; is conditioned on the ground truth tokens which is different
from Equation 4.2 where the actual generated sequence is used.

4.3.3 QUERY GENERATOR

Once the summarization model is trained, it is retrained for the second task using the MS-
MARCO collection. A key limitation of the query generation task is that there is a limited set
of queries that can be regarded as “labels”. However, in our task, we do know the original doc-
ument used as input, and it can be used as a relevance label just as is common practice on the
known-item finding task.

context action doc

query

Retrieval Model

Environment

(a) Contextual Bandit (b) Query Generation.

Figure 4.3: Query generation as a contextual bandit problem.

Contextual Bandit. We model the query generation process as a contextual bandit problem.
Figure 4.3 illustrates how a contextual bandit is adapted to the query generation task. In Fig-
ure 4.3a, an agent tries to find the best action given different contexts. It issues actions to the
environment and receives a reward. The agent uses the reward to learn which actions are better
and is optimized to favor high-reward actions. Correspondingly, in Figure 4.3b, our generator
generates a query from a document, and receives an effectiveness score from the retrieval model.

https://github.com/pytorch/fairseq
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4.4

Given both, we are in a position where we can take advantage of optimization techniques used
in contextual bandit problems, with the policy gradient algorithm being the key addition.

Policy Learning. We use a summarizer fine-tuned for the target collection as the starting point
of a policy network. A policy is a decision-making rule used by the agent to determine its next
action. For instance, the reward for every possible action can be estimated, and then the one with
the highest reward is chosen. This is known as a value-based method. However, this approach is
not commonly used for high-dimensional action space problems. In the query generation prob-
lem, one query can be viewed as an action, and the possible number of queries are enormous
unless a set of constraints are imposed, such as query length. However, a policy-based method
can be used to produce an action which it believes is promising without needing to consider the
entire action space. The policy is then optimized based on the reward provided by the environ-
ment. If an action results in a high reward then it is reinforced using a policy gradient algorithm,
and vice versa. For additional details on the theoretical formulation of policy gradient methods
and their motivation, see Chapter 13 of Sutton and Barto [195].

Given a training document D, our training target maximizes the reward received from the
generated query Q, which is defined as

if D is retrieved using Q,

1
R(Q) _ J rank(D.0)
0 otherwise.
where rank is the rank position of document D in a rank list scored with a retrieval model M.
The reward can also be defined to incorporate other features such as query length. In our model,
we use the REINFORCE [209] training algorithm, and the loss is defined as:

L=- Zlog P(G¢141, G2, - -+ » Gs-1, D) - R(Q) (4.2)

t=1

Note g, is conditioned on the actual output sequence ¢y, - -, §;—1 and ground truth labels
q1, -+ »q¢—1 are not needed. This loss is intuitively interpreted as follows: the greater the reward,
the more likely the model will generate similar outputs. For example, if the probability of choos-
ing a token is 0.5 and it delivers a very high reward, the probability of choosing this token again
in the future will be increased as training continues.

BASELINES

We compare our proposed method against a few baselines. All the approaches used for our em-
pirical evaluation are described in Table 4.1. The subscript p is appended when query length is
sampled from a poisson distribution, and f is used when the query length is fixed, which will be
explained shortly. Two additional points of reference are provided that represent the two best
models currently available for the abstractive summarization task for the CNN/DailyMail collec-
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Table 4.1: A summary of all methods used in this work.

Method  Description

POP Generate queries by popularity sampling.

DIS Generate queries by discriminativity sampling.

GREEDY Generated queries by greedy algorithm.

Use passage beginning as query, truncated to

match queries generated by our method.

T5 A high-quality abstractive summarizer proposed by Raffel et al. [164] and fine-
tuned using query-document pairs as described by Nogueira and Lin [146].

UnilM A high-quality abstractive summarizer recently proposed by Dong et al. [61]. As
with T5 [146], we fine-tuned the model using query-document pairs for query

PSG

generation.

RL The reinforcement learning model proposed in this chapter.

tion — UniLM and T5- both of which consistently generate high-quality natural language text. In
our experiments, we also fine-tune UniLM using query-document pairs and T5 in the same way as
initially described by Nogueira and Lin [146]. Both can be regarded as reference points for query
quality, and are much larger (and recent) pretrained transformers than the Fairseq summarizer
we had available when initially undertaking this work. However, as demonstrated in Table 4.2,
high quality summaries for a document are not necessarily effective queries. The generated sum-
maries from these two algorithms were truncated as this makes them more comparable to our
methods while still retaining the quality generated text.

Popularity Sampling (POP). The popularity sampling baseline was initially proposed by Az-
zopardi et al. [5], and favors popular or frequent terms in a document. Formally, terms are sam-
pled from a mixture distribution of the document and the collection.

p(t16a) = (1= D)p(tld) + Ap(t) (43)
where (t.d) 0
n(t, _ n
D= Sy P e 9

where n(t,d) is term occurrences of t in d, and n(t) is term occurrences in the collection.

Discriminativity Sampling (DIS). Discriminativity sampling is our second baseline, and also
from Azzopardi et al. [5]. This method favors terms that are rare. It is proportional to the inverse
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term collection frequency. Compared to POP, the difference is how p(t|d) is defined.

b(t, d)

b(r.d (4.5)
p(8) - Tpca A

p(tld) =

where b(t|d) = 1if ¢ is present in d. For all terms in a document, the only variant is p(t), so the
probability of a term being sampled is proportional to the inverse term collection frequency.

Greedy (GREEDY). This is the original strong query algorithm proposed by Kumar et al. [104],
which generates the shortest query capable of ranking a document at the topmost position. The
algorithm incrementally selects the rarest term from the document, until the intersection of the
documents containing these terms contains only the target document. Refer to the original paper
for further details [104].

Note that this algorithm has an important limitation on large collections. The algorithm be-
haves erratically when the target document is a subset of other documents, or if there are dupli-
cates in the test collection. So, in some cases, the algorithm will not terminate until every term in
the document has been added to the query. In the MS-MARCO collection, we encountered sev-
eral instances of this erratic behavior as there are several (near-) duplicate documents. In such
cases, we truncate the queries to 5 tokens. During our experiments, we found this bound to be
more than sufficient to find the original document very effectively in the vast majority of cases.

Passage (PSG). We also use the corresponding passage of a document released in the collection
as a reference query. While long, these are human-readable and often highly effective as they
are extracted directly from the original document. Human crafted summaries would perhaps be
a more interesting baseline and exhibit higher variance, but are not available for MS-MARCO at
this time.

Since the passages are extracted from the target documents, it is not surprising they are
highly effective. We also extract the first a few tokens from the passages to match the query
lengths of other methods for the fairest comparison. This is similar to the commonly used NLP
approach where the first few sentences are used as a summary baseline, and is often difficult to
beat in practice [185], particularly for news documents. When the query length is sampled from
a poisson distribution, we refer to it as PSG_P; when the length is same as the query generated
by our network, we refer to it as PSG_F.

Neural Summarizers. T5 [164] and UniLM [61] are the state-of-the-art techniques in abstrac-
tive summarization. They are both versatile seq2seq models which were trained by utilizing
transfer learning with several text-related tasks. Nogueira and Lin [146] have successfully used
a T5 model to enrich sparse documents. While these neural summarizers are surprisingly good
at generating high quality summaries, it is unclear if the quality can be directly translated into
retrieval effectiveness for ranking tasks. We fine-tuned T5 and UniLM using relevant passage-
document pairs as Nogueira and Lin [146].
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4.5 EXPERIMENTS

4.5.1 COLLECTION DETAILS

We use the CNN/Dailymail collection to train and validate the summarizer, and MS-MARCO to
train and test the query generator.

CNN/Dailymail. CNN/Dailymail is a large news corpus commonly used for the summarization
task. Every document in the dataset contains an article and a few human-written highlights,
which can be used as the ground truth. We truncated documents and highlights for training
efficiency as in prior work [140, 157, 185]. Specifically, source documents are truncated to 800
terms and the highlights to 100 terms. The collection is split into train, valid, test splits based on
publicly available data.? The final dataset contains 287,227 training pairs, 13,368 validation pairs,
and 11,490 testing pairs.

MS-MARCO. The MS-MARCO collection contains both document ranking and passage re-
ranking tasks, with 8.8 million passages extracted from 3.6 million web documents. The doc-
ument ranking and passage re-ranking tasks share the same queries. In our experiments, we
removed around 3.5% of the documents which contained serious parsing errors, or that con-
tained fewer than 25 terms, as these contained uninformative content such as “this site requires
cookies to be enabled to function”. The grel files released with document ranking task and pas-
sage re-ranking task were joined to map a total of 309,387 document-passage pairs, and used for
training and testing in our experiments.

Our validation set contains all the unique documents extracted from the document validation
grel file.® Training and testing sets were constructed as follows. All unique documents in the
document training grel file * minus documents in the validation set were randomly sampled to
produce test and training. The final split contains 299,535 training examples, 4,926 validation
examples, and 4,926 testing examples.

Shared Vocabulary. In order to transfer the model from one collection to another, a joint vo-
cabulary was created. We used the spaCy® toolkit to tokenize and process the text and applied
subword-nmt® as is common practice. A vocabulary size of 40K was used.

Query Generator Parameters. Queries were generated using beam search with a beam size
of 5. Query lengths are determined in two ways, fixed or sampled. For fixed, the target was 10
tokens per query. Note that our summarizer was also initially trained with a 10 term target, as

https://github.com/abisee/cnn-dailymail
3https://msmarco.blob.core.windows.net/msmarcoranking/msmarco-docdev-qrels.tsv.gz
4https://msmarco.blob.core.windows.net/msmarcoranking/msmarco-doctrain-qrels.tsv.gz
Shttps://spacy.io

Shttps://github.com/rsennrich/subword-nmt
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4.5.3

user queries rarely exceed this length [42]. We also sample lengths from a poisson distribution
between length 3 to 10 for comparison purposes.

AUTOMATIC EVALUATION

To evaluate the effectiveness of the generated queries, we use reciprocal rank and average rank
position. As millions of iterations are required during the reinforcement learning stage, efficient
ranking is critical. So, we used the Pisa search engine’ and BM25 to iteratively rank documents
and evaluate the reciprocal rank of the documents during the learning phase.

How best to evaluate fluency or readability of the generated text is less straightforward
as there is no standard benchmark unless human judgments are performed. The general best-
practice is still to have both human and automatic evaluation results when assessing natural
language text [79]. So, we have considered many measures in order to capture different dimen-
sions of quality, including crowdsourcing of human assessments to ensure the validity of our
conclusions. We will refer to automated methods that measure some notion of natural language
text quality using the generic term READ,. Human evaluation is discussed further in the next
subsection.

The first READA measure we consider is the Flesch reading-ease test. It is calculated based
on the # of syllables, # of words, and # of sentences. Unfortunately, this metric does not account
for word order. We also considered ROUGE where the original document is the reference. While
researchers are often skeptical about ROUGE, we find that it does indeed correlate with our
human assessment as it can capture basic higher order dependency information, but not infor-
mativeness. The only other recent solutions found in the literature leverage Perplexity [93]. The
measures proposed by Kann et al. [93] are somewhat intuitive in that the idea is to get an average
perplexity of the terms in the summary. However, no publicly available implementation of SLOR
or WP-SLOR is currently available, and so we have computed perplexity using the pretrained
GPT model® which is known to generate high-quality text, and normalized by the length of the
query. We refer to this automatic method as PPL/QL henceforth.

HumAN EVALUATION

As is common with all abstractive summarization techniques, the only way to confidently assess
the quality of the generated text is to perform human assessments to judge the quality. So, we
validate our findings using a human assessment exercise.

We gathered judgments for both Readability and Informativeness, which is standard practice
when assessing the quality of natural language text generators [66]. Readability is synonymous
with the grammatical correctness of the text [38, 198] and informativeness refers to the “mean-
ing” [198] or “importance” [38]. Readability measures if the query is grammatically correct and

"https://github.com/pisa-engine/pisa
8https://github.com/huggingface/transformers
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fluent; informativeness measures if the query is informative and representative with respect to
the document. In contrast to READ4, we will use READINFy; to refer to the human judgments.

Method. We performed human evaluation using a crowdsourcing exercise on Amazon Mechan-
ical Turk.® We cast the evaluation process as a headline quality evaluation which is a well-defined
task in the NLP community. We gathered judgments for 50 documents sampled from our holdout
set. The text of document was shown to an assessor, and informed them that they would be judg-
ing a series of headlines that are automatically generated for each. Then we asked the assessor
to evaluate the quality based of two different criteria: readability and informativeness. Assessors
were asked to evaluate each headline using a 5-point scale. The criteria used for assessments was:

+ Readability - is the headline grammatically correct and fluent, where a 0 = “major er-
rors, words have no apparent ordering” through 4 = “Outstanding, grammatically correct
English sentence”.

+ Informativeness - is the headline informative and representative, where 0 = “incoherent
and completely unrelated” to 4 = “Complete, the most important meaning is preserved, and
is easy to understand”.

For each document, we create two tasks, one for the poisson set and one for the fixed set
so that they were compared directly and independently with the most appropriate counterpart.
So one task presented GREEDY, PSG_P, POP_P, DIS_P and RL_P queries, and the other task
presented GREEDY, PSG_F, POP_F, DIS_F and RL_F queries. The queries were shown in random
order to keep the assessors from inferring any pattern. In addition, a third task was run for the
same documents to gather assessments for the current state-of-the-art methods: T5 and UniLM.
Both of these models are capable of generating high quality natural language text and provide
an important point-of-reference for future work.

A screenshot of the user interface is show in Figure 4.4. Note that five headlines were shown
at one time, but are trimmed to two in the example image.

Crowdsourcing Aggregation. We collected five assessments for every generated query in the
50 document set, and several pilots were run to determine the most suitable configuration for the
crowdsourcing study. Assessors were paid $20c USD per hit, with worker eligibility requirements
set to Master, greater than 10,000 approved HITs, and the Turker had to have a HIT approval rate
for all HITs greater than 97%. A total of 32 assessors participated in our study. 9 assessors com-
pleted only 1 assignment. 7 assessors completed 2-9 assignments. 16 assessors completed at least
10 assignments. The mean and median of tasks completed by one assessor are 20 and 10 respec-
tively. On average, each assessor spent 150 seconds to complete 1 assignment. In order to validate
the quality of our judgments, we computed the inter-assessor agreement using Krippendorff’s
a [102], which was 0.552 for readability judgments and 0.472 for informativeness judgments.

https://www.mturk.com
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This is in line with similar crowdsourcing experiments which incorporate graded relevance, and
in order to further improve the reliability, we applied the EM (expectation maximization) algo-
rithm [55] on the 5 judgments per query we collected. In order to generate the final scores for
both criteria across all methods. This approach has been shown to reliably normalize judgments
and make them more resilient against assessor disagreement problems in crowdsourcing exper-
iments, particularly when graded assessments are used [163], and has been used in the same
manner in several other recent studies [86, 90, 91]. We used the publicly available EM imple-
mentation of Sinha et al. [189] to create the final labels.

We also used a simple quality control test during the exercise to filter out assessors who were
not clearly not assessing correctly. For this, we compared the informativeness score given for the
original passage snippet against their score for the greedy algorithm, which is often one or two
terms and should be the least informative. If they scored greedy higher than the actual passage,
their judgments were dropped, and they were blocked from participating in the exercise.

Do the following headlines correctly capture the key information shown in
the document text?

Instructions

Computer systems can generate headlines for news articles automatically. Given a document text, an automated systems attempts to generate
succint headlines that capture the most salient aspects of the reference text. Please evaluate the quality of the headlines for these two dimensions:

* Readability - is the headline grammatically correct and fluent, where a 0 = *major errors, words have no apparent ordering* through 4 =
"Outstanding, grammatically correct English sentence."

= Informativeness - is the headline informative and representative, where 0 = “incoherent and completely unrelated* to 4 = *Complete, the most
important meaning is preserved, and is easy to understand"

Text

How to Activate Voicemail on Verizon

Press *86 and then send from your Verizon Wireless device.

If you care to activate your voice mail without your personal Verizon Wireless phone, just dial your wireless phone number and
your voice mail will answer.

Headline 1
verizon wireless phone activate 86

How readable and informative is the headline?
Readability: ©0 ©1 ©02 ©3 04 Informativenesss ©0 ©1 ©2 ©03 04

Headline 2
voicemai 86 dial personal activate

How readable and informative is the headline?
Readability: ©0 ©1 ©2 03 04 Informativeness: 00 ©1 02 03 04

Figure 4.4: Crowdsourcing interface for readability and informativeness assessments.
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Document Selection. The MS-MARCO collection contains a substantial number of parsing
errors and uninformative pages. For example, on a web page, “Q&A _Children can suffer” was
incorrectly parsed as “Q&AChildren can suffer” (the space between “A” and “Children” is miss-
ing) and ends up with a rare but invalid word “achildren” which can be easily exploited by the
GREEDY and DIS algorithm. Another example is a web page consisting of many hex color codes
was excluded for evaluation as the queries produced by all the methods were effective but also
were not informative as they did not align with the original reference queries. While walking the
list of available documents, we attempted to select 50 documents of reasonable length and that
were parsed cleanly by the creators of the original MS-MARCO collection.

4.6 RESULTS

Table 4.2: Retrieval effectiveness and readability/fluency comparison for all 12 methods. Our
approaches are shown in bold face.

. PPL/QL ROUGE Precision Read
Model Len RR Rank Scarcity A\is 1 5 L W Flesch
PSG 55.1 0.790 67.3 2.9% 7.7 91.31 81.67 87.88 77.72 21.93
GREEDY 2.4 0.923 2.3 53.1% 51260.7 100.00 0.19 85.85 80.01 4.96
UnilLM 5.6 0.261 146.5 3.6% 113412.1 82.84 40.00 81.48 65.65 71.94
T5 5.9 0.232 200.0 3.1% 11501.3 80.73 35.64 79.02 62.77 75.64
PSG_P 5.8 0.347 239.2 0.5% 8282.6 93.68 83.25 93.36 81.36 67.16

POP_P 5.8 0.246 414.6 2.0% 28466.0 86.23 4.43 74.03 56.53 71.92
DIS_P 5.8 0.847 11.8 52.6% 17949.3 73.11 0.73 54.84 42.00 37.22
RL_P 5.8 0.530 114.5 1.1% 22297.5 94.04 18.77 80.35 62.54 69.00

PSG_F 9.6 0.519 102.7 0.7% 307.6 93.76 84.18 92.82 80.22 66.43
POP_F 9.6 0492 1595 3.5% 2586.8 86.02 4.38 67.59 46.78 68.64
DIS_F 9.6 0.886 5.7 54.1% 1878.9 66.65 0.78 46.02 31.76 37.82
RL_F 9.6 0.780 11.0 1.0% 1128.1 94.88 20.11 75.34 53.68 68.98

4.6.1 RETRIEVAL EFFECTIVENESS

The retrieval effectiveness results are shown in Table 4.2. First, we consider the impact of query
length. PSG and GREEDY queries represent both ends of the spectrum of query length. The
former is formulated using natural language and is verbose. In our experiments the average
length of PSG is 55.09 terms. Conversely, GREEDY extracts the most discriminative terms yielding
queries that contain 2.44 terms on average, which is even lower than the average of 3.26 originally
reported by Kumar et al. [104].
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We report both reciprocal rank (RR) and average rank for effectiveness comparison as RR
is the evaluation method used to determine the leader-board for MS-MARCO. Both PSG and
GREEDY queries are highly effective. The reciprocal rank of PSG is 0.790 and an average rank is
67.3. Note that we use a simple bag-of-words ranker (BM25) and performance would very likely
be improved using any of the more complex deep learning models that dominate the leader-board.
Nevertheless, the queries induced are highly effective with even simple ranking models. So, while
often effective, long passages extracted directly from a document are not necessarily good queries
for refinding the document. Given that there are similar or even duplicate documents in the
collection, the variance is as expected. The GREEDY algorithm is designed specifically to retrieve
the original document, and this is confirmed by the impressive RR and average rank effectiveness
the model achieves. However, duplicate documents again have an impact on the quality.

Following GREEDY in Table 4.2 are the two best abstractive summarizers T5 and UniLM.
They achieve surprisingly low retrieval effectiveness, further justifying the use of a reinforcement
learning retraining stage as proposed in this work. We suspect that their low effectiveness may be
related to their “abstractive” nature which can improve the linguistic content, but not refinding.

We now turn to the Poisson sampling experiments. For each document, we sample a length
from the Poisson distribution, and all systems generate queries of that length. In this group,
PSG_P and POP_P queries have the worst reciprocal rank and average rank. This is understand-
able as PSG_P can contain several stop words. The same limitation affects POP_P as sampling
is based purely on frequency, and stop words have a high probability. DIS_P performs the best
among this group, with a reciprocal rank of 0.847 and average rank of 11.8. Essentially, DIS is a
non-deterministic variation of the GREEDY algorithm, resulting is a similar behavior of choos-
ing rare words as a query. Both methods exploit rare terms in a document, so very few terms
can often be found to reliably refind the original document. Our proposed RL model achieves a
reciprocal rank 0.530 and average rank 114.5, and as we will show shortly also performs well
for our other target goal — informativeness / readability. When considering only effectiveness, it
falls between POP_P and DIS_P, and is consistently better than PSG_P.

The final grouping compares fixed length generation. While 10 terms is rather long for a “nor-
mal human query”, it is a realistic target for a compressed summary that retains some natural
language properties, thus making them more understandable (hopefully). Compared to the Pois-
son results, we see that retrieval performance improves as the query length grows. This is again
not unexpected as verbose queries often favor precision over recall [77]. Note that the PSG_F
and POP_F queries show considerable improvements in this configuration when compared with
DIS_F queries. This is because PSG_F and POP_F queries are more likely to incorporate at least
one or more discriminative terms as the length increases. Another major improvement can be
observed for RL_F. This could be an artifact of the initial summary training stage which also
targeted ten terms, and will be investigated further in future work.

In general, our retrieval results align with our intuition. PSG queries are extracted from the
original document and do not suffer from vocabulary mismatches, so they are often effective
queries for refinding. POP is inferior to DIS. With very few rare terms, GREEDY can consistently
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produce short and effective queries. Our RL method also reliably improves the effectiveness of
the queries, easily outperforming PSG, POP, UniLM and T5, and is nearly as effective as DIS when
query length is increased.

AutoMATIC EVALUATION RESULTS

As shown in the previous section, retrieving the original document is not a difficult problem
from an algorithmic perspective if only rare terms are used. But how readable and informative
are such queries? Do they capture the most salient aspects of the underlying document? Can
users easily understand their intention? The answer is almost certainly no in many cases. So
there is a natural tension between the effectiveness of a query and the interpretability of it.

Recall in Section 4.5.2 that reliably measuring fluency in an automated manner is still an open
research problem. In Table 4.2 we compare a variety of different evaluation metrics in order get a
better indication of the quality of the queries being generated. All of these metrics have been used
for automated evaluation of human generated text in the past. The first metric we consider and
arguably still the most commonly used one for summarization tasks is ROUGE. We report only
precision-based ROUGE where the document is the reference. PSG’s ROUGE scores are high, but
not 100 as expected because there are a few incorrect document-to-passage mappings in the MS-
MARCO collection. The creators have acknowledged that the passage corpora and document
corpora are collected at different times, causing such inconsistencies. Overall, queries derived
from passages all have high ROUGE scores. For GREEDY, ROUGE-1 clearly shows that all the
terms are from the document. ROUGE-2, ROUGE-L and ROUGE-W may not be meaningful for
the GREEDY algorithm as 2,414 out of 4,926 queries contain only one term, resulting in a score
of 0 for ROUGE-2 and score of 100 for ROUGE-L and ROUGE-W.

The ROUGE scores of UniLM and T5 also have several notable properties. Both systems pre-
fer more bigrams (high ROUGE-2) than the other methods, and maintain term ordering (high
ROUGE-L) even when they are not adjacent. This is an important contributing factor to their
highly readable text.

The ROUGE scores for the Poisson sampled methods reveal that DIS_P are the least compli-
ant for ordered sequence measures, and POP_P also commonly permutes term orderings. The
RL method achieves higher scores especially in ROUGE-2, ROUGE-L, and ROUGE-W, which is
promising as it suggests the model has retained its NLG capabilities learned during summariza-
tion. Similar trends can be observed in the fixed length grouping.

The last automatic metric we consider is the Flesch score. The readability score for PSG is low
since punctuation was removed for query purposes, thus removing the sentence normalization
factor. GREEDY queries also perform quite poorly. Despite being short, the number of syllables
in the terms selected are large, indicating they are indeed rarely seen terms, such as “nebuchad-
nezzar” or “hypochlorous”. For all other methods, Flesch scores are similar except for the DIS
which also favors rare terms.

While ROUGE and Flesch provide some insight into the characteristics of these queries, they
capture little or nothing about grammatically, informativeness, or fluency. So, our final automated
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4.6.3

evaluation technique leverages perplexity, which we derive using a high quality pretrained lan-
guage model OpenAI GPT. The score produced is inversely proportional to the chance of a query
being a proper sentence in the collection using a high quality NLG model. PSG has the lowest
score, or highest chance of being natural language. GREEDY has the highest perplexity score
except for UniLM which we will analyze later, again illustrating the two ends of the spectrum.
For Poisson sampled methods, PSG_P has the lowest score, POP_P is least likely based on the
reference distribution, and surprisingly DIS_P is the best, with our RL method falling somewhere
in the middle. For fixed length methods, DIS_F is still better than POP_F, which is also surprising,.
For longer queries, RL outperforms both POP_F and DIS_F.

Effectiveness-Readability Tradeoffs. Until now, we have only considered effectiveness and
quality as independent goals, but recall that our real goal is to find the best trade-off between both
of these objectives. This is best visualized by the Pareto frontier between readability and effective-
ness. Figure 4.5 shows the trade-off between retrieval effectiveness (reciprocal rank) and query
fluency measured as the perplexity normalized by query length. The best performing methods
appear in the top left quadrant of the tradeoff graph. We can see that our proposed RL approach
does indeed find the best balance between the two competing goals.

Since the retrieval problem is trivial for DIS_P and GREEDY if the rarest terms can be selected
from a document (even parsing errors), we also explore their performance when the vocabulary
is limited. We explored limiting the vocabulary for the two methods to the most frequent 50K,
100K, 200K, and 500K terms, and measured the performance impact. Figure 4.6 shows the changes
in performance for both of these algorithms when allowed to only use the most common 50, 100,
200, or 500 thousand terms in the collection. Overall DIS_P is highly sensitive to vocabulary
size. We also observed that the performance of DIS_P can be unstable when using a limited
vocabulary. The reason is that rare terms are no longer available, and so term impact varies less,
and random sampling increases the variance as the term frequency distributions become less
skewed. The GREEDY method is remarkably consistent across different vocabulary sizes, as it
can always take full advantage of the rarest terms remaining in any vocabulary.

Results for T5 and UniLM can be seen in the bottom right corner of Figure 4.5. We observed
high perplexity for these models. This is somewhat unexpected, but we believe it is related to how
we have conditioned perplexity on the GPT language model, and not the models used to generate
the queries. Care should be taken when using perplexity to automatically evaluate quality, as
we have observed that the results are strongly dependent on the text the language model is
conditioned on.

HumaN EvaLuATION RESULTS

Given the newly created judgments gathered with Turk we can properly assess the quality of
our results in terms of human readability. The key results are shown in Table 4.3. Similar to the
complete holdout test set results, we also computed a battery of the automated metrics. The au-
tomated metrics do indeed demonstrate similar trends in Section 4.6.2 when compared directly
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Figure 4.5: Effectiveness-readability tradeoffs according to automatic metrics on the holdout set.
Lower perplexity is better, so a system located in the top-left has the best trade-off.

against the human assessments. The final human assessed scores are shown on the right of the
table under “Human/Readability” and ‘Human/Informativeness”. The PSG_P and PSG_F tend to
result in high quality queries as they were extracted directly from the documents, but trunca-
tion clearly has an effect on both. The longer the query, the better they perform. Interestingly,
UniLM and T5 received the highest readability and informativeness scores after PSG_F, indicat-
ing they are very good at representing the document and they can generate coherent and succinct
queries that are of high quality. However, as discussed previously, they are not necessarily effec-
tive queries. When compared to other baselines, our approach RL_P and RL_F are significantly
different based on our preliminary human assessments.

Tradeoffs Revisited. We are now in a position to fully assess our primary objective, which was
to find the best tradeoffs between effectiveness and readability/informativeness.

The GREEDY algorithm remains the strongest in terms of raw effectiveness (RR) and in either
poisson (suffixed by _P) or fixed set (suffixed by _F), our proposed methods RL rank second after

+*
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Figure 4.6: Effectiveness for DIS_P and GREEDY of different vocabulary sizes.

the DIS approach for effectiveness. This trend is consistent with experiments on the complete
holdout set. Importantly, we can also see from the results of UniLM and T5 that highly readable
and informative summaries are not necessarily effective queries. The natural language quality
of these two systems was the highest in Table 4.3, but the effectiveness shown here is lower
than methods that are optimized directly or indirectly for effectiveness. The comparison of RL
against UniLM and T5 further illustrate the importance of the proposed second stage reinforce-
ment learning training for balancing effectiveness and natural language quality.

We plot each system’s effectiveness and the aggregation of readability and informativeness
score in Figure 4.7. Figure 4.7.1 illustrates the tradeoff between effectiveness and human eval-
uated readability and informativeness. PSG_F, PSG_P, T5, and UniLM are the clear winners on
readability and informativeness but all are clearly less effective. Similarly, the GREEDY and DIS
approaches achieve high effectiveness but were determined to be less readable by human asses-
sors. Our system sits in a more balanced position. Figure 4.7.2 illustrates effectiveness versus
PPL/QL. Figure 4.7.3 extends human evaluation to Rouge-2, as we found Rouge-2 is correlated
with human evaluation with a Pearson correlation coefficient of 0.64. The correlation can also be
visually observed in the figure. Figure 4.7.4 confirms that the trends for ROUGE-2 on the human
assessed documents are consistent with those computed for the complete holdout set, suggest-
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Figure 4.7: Effectiveness-readability/informativeness tradeoff according to human assessments.
Subfigure 1 shows results from human assessments. Subfigure 2, 3, 4 shows results from auto-
matic metrics which have a similar trend to human assessments. For subfigure 1, 3, 4, we prefer
a system located in the top-right. For subfigure 2, we prefer a system located in the top-left.
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4.6.4

Table 4.3: Natural language evaluation for the 50 documents assessed by humans, where T sig-
nifies significance at p < 0.05 in a paired t-test relative to our methods RL_P or RL_F. Our
approaches are shown in bold face.

PPL/QL ROUGE Precision Readability Human Evaluation

Model Avg 1 2 L w Flesch Read Info

GREEDY 46718.0 100.00 1.89 72.25 59.83 6.65 1.20F 0.44%
UnilM 27101.8 82.84 41.66 82.23 66.07 66.90 3.067 2.76%
T5 3023.2 82.20 38.47 80.67 63.96 72.45 3.367 2.48%
PSG_P 6588.4 93.19 8334 9276 8191 70.51 2.82% 1.92%
POP_P  240609.6 85.83 5.75 72.13 55.61 71.69 0.621 0.12%
DIS_P 126 284.6  79.05 1.50 57.05 43.89 24.49 0.627% 0.24%
RL_P 14 152.6 98.14 16.68 81.60 63.92 66.96 1.74 0.80

PSG_F 152.2 92.13 81.03 90.61 78.98 68.52 3.40F 3.02%
POP_F 2467.5 84.84 5.81 65.28 45.51 69.37 0.34F 0.06F
DIS_F 8118.2 71.15 1.36  47.52 32.78 34.34 0.061 0.12%
RL_F 750.8 96.91 19.95 73.48 52.81 70.05 1.74 1.20

ing that ROUGE-2 is indeed a reasonable surrogate for a human assessment when attempting to
benchmark quality automatically, at least for preliminary testing of a new model.

QUALITATIVE ANALYSIS

We now discuss the results produced for some documents in order to provide a little more in-
tuition into the queries being generated by each approach, that were subsequently evaluated by
the crowdworkers.

The queries generated by the six systems are shown in Table 4.4. Document “D133390” is a
description of the 19th amendment which grants women the right to vote. Both T5 and UniLM
clearly generate high quality text. POP_F and DIS_F, as their names suggest, select popular and
discriminative words respectively. Neither model attempts to induce a natural language order-
ing of the terms selected, making them much more difficult to comprehend. Similarly, GREEDY,
a deterministic version of DIS_F, generates the two rarest terms from the document and provides
no meaningful information from the original document. RL_F is not fully correct grammatically
since there is a bias towards discriminative terms, and so the term-wise probability is skewed
when beam search is applied. Nevertheless, semantically correct phrases such as “gave women
right” show that the natural language summarizer is having a positive effect. The method also se-
lected keywords such as “susan”, a key figure in the movement, and “tennessee”, where the final
needed approval was passed increasing the informativeness scores while also being discrimina-
tive. In other examples, we can see a similar trend. When compared to T5 and UniLM, our method
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Table 4.4: Query examples for documents in the MS-MARCO test collection

System Query

Query examples for document D133390

RL_F susan the tennessee civil constitution movement gave women right

T5 why was the 19th amendment important

UnilLM how did the 19 th amendment change voting rights for women

POP_F the last became was illegal under state th get

DIS_F leser schenck the commentscomment symbolic lawmaker electorate cady this
GREEDY leser commentscomment

Query examples for document D143592

RL_F sony full frame produce at 400 plus mm lens but

T5 difference between full frame and aps-c

UniLM difference between full frame and aps - ¢

POP_F full and many are the com it sony lens there

DIS_F tcav new normal that or dimmest become founder by were

GREEDY tcav luminance

Query examples for document D2989514

RL_F microsoft visual studio code is close to community operation

T5 what is a linq

UnilLM . net framework extensions

POP_F preview technology the center all data close laptop visual

DIS_F nowmicrosoft and water fashion tae assume language tree fodmap

GREEDY nowmicrosoft extension

sometimes sacrifices grammatical correctness and selects “higher impact” terms for the ranking
model being used — increasing the likelihood of refinding the document in the collection.

In summary, the best-known techniques such as T5 and UniLM are consistently good at gen-
erating human-readable text that accurately represent the source document, while our proposed
algorithmic framework retains important properties from summarization but also has much bet-
ter retrieval effectiveness. Some technical limitations of our proposed method can also be ob-
served in the queries being generated — some readability is being sacrificed in the second stage
in order to improve ranking effectiveness, causing the generated queries to be less syntactically
complete. In future work we intend to continue exploring how both of these important objec-
tives might be directly optimized simultaneously, further improving our ability to find the more
desirable trade-offs between these two competing objectives.
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4.7 SUMMARY

In this chapter, we formalize and study the SNLQ problem, which imposes a readability objective
in addition to the effectiveness objective on the query generation task. In contrast, the Relevance
Modeling technique discussed in Chapter 3 aims at effectiveness only. The readability objective
poses new challenges on both ends of the generator: input and output. For the input, the gener-
ator needs to understand more complex word dependencies; for the output, the generator needs
to generate human-readable queries. By combining state-of-the-art abstractive summarization
with reinforcement learning, we can learn a Transformer model for both readability and effec-
tiveness objectives. We show our approach compared against the algorithmic solutions to the
strong query problem and the state-of-the-art Transformer-based summarizers. Our approach
outperforms the algorithms solutions in readability while still achieving high effectiveness. We
also find summarizers produce high-quality summaries but fall short in ranking effectiveness.
Our approach is capable of generating queries that balances these competing objectives of rank-
ing effectiveness and human readability.

The approach we introduce in this chapter trains a Transformer model for summarization
and ranking in two separate stages. The knowledge learned in the first stage is transferred to the
second stage, so the model is able to generate natural language queries while being optimized
for ranking effectiveness. In the next chapter, we will discuss a joint modeling approach which
combines query generation and ranking. Through Multi-Task Learning, the knowledge of query
generation can be transferred to ranking and to further improvements in ranking quality.



5 ENRICHING RANKING MODELS USING
QUERY GENERATION

5.1 INTRODUCTION

Up to this point, we have discussed using Relevance Modeling to improve a query, and using
Transformers to generate effective queries. They both try to improve the information need rep-
resentations from a query perspective. In this chapter, we present a method of improving the
understanding of queries from the ranking model perspective. Specifically, we incorporate query
generation into the training process of a ranking model, so the model is enriched with extra
relevance signals and is more effective and generalized.

Transformers not only are effective at generation but also have shown promising potential
in ranking, in which the language modeling pretraining plays a critical role. Transformer based
models are often pretrained with language modeling tasks to obtain general language knowledge,
then they can be easily finetuned for specific tasks, such as generation and ranking. The language
modeling task focuses on general language understanding without a focus on relevance — the
relationship between a document and a query. This decouples specific tasks from the general
pretrained models, so these models can be very versatile. This pretraining approach also opens
a gap. Can we further enrich its language capability with a stress on relevance? We will present
a method that can exploit known query-document pairs and incorporate such relevance signals
into ranking models, i.e. we jointly train ranking and query generation.

While a Transformer architecture can be used for ranking and query generation indepen-
dently, little prior work has focused on combining the two into a single model, and the connec-
tion between them can be also seen from a probabilistic perspective. Developing efficient and
effective retrieval models has been at the core of information retrieval (IR) research since the
1960s [46]. Early models, such TF-IDF [180], relied on heuristics derived from statistical proper-
ties of documents contained in a collection. The well-known probability ranking principle (PRP)
of Robertson [168] provided a theoretical foundation to these early ideas using probability the-
ory. PRP frames a retrieval model as being an estimate of the probability of a document D being
relevant (R) to the query Q, i.e., P(R|Q, D), where R is a binary random variable. This probability
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can be estimated using a discriminative model or a generative model. The terms discriminative
model and generative model map to a transformer ranking model and a transformer generation
model respectively. We will use transformer ranking/generation model when we discuss the spe-
cific models used in this chapter and use discriminative and generative when we discuss the more
generalized concepts.

Discriminative models for retrieval were first proposed by Fox [67] and later adopted in a
number of successful learning to rank models, including SVM-based and decision tree-based
modeling approaches [27, 89]. More recent neural ranking models in this category have also
been proposed [56, 76, 145]. Generative models have also been used by a number of well-known
retrieval models. For example, classic probabilistic retrieval models such as BM25 [166] are based
on a document generation assumption. In contrast, the statistical language modeling, which is
the basis of models such as query likelihood [160], are based on a query generation assumption.

Therefore, it is clear both discriminative and generative approaches have merits, and can
potentially surface valuable signals which can be used to improve retrieval effectiveness. In this
chapter, we show how both of these approaches can be used together to produce more effective
retrieval models. More specifically, we are interested in resolving the following hypothesis:

Joint discriminative and generative retrieval modeling leads to more generalized, and hence more
effective retrieval models.

To validate our hypothesis, we introduce a novel Multi-Task Learning (MTL) framework in
which the tasks include both discriminative and generative relevance models. In the discrimina-
tive tasks, the model maximizes the likelihood of predicting the relevance labels given queries
and documents, while in the generative tasks, the model is optimized to generate queries/ques-
tions given documents.

Developing a neural network architecture for both discriminative and generative modeling of
relevance is challenging, because generative models rely heavily on encoder-decoder based archi-
tectures, while discriminative models typically require only an encoding component. We investi-
gate two approaches to joint modeling: (1) an encoder-only architecture in which the generative
tasks are modeled using input masking. For example, query generation is modeled by masking
the query in the input of the network and using a maximum likelihood objective to predict the
query tokens associated with the masked tokens; (2) an encoder-decoder Transformer architec-
ture [201] in which the discriminative relevance modeling is implemented by feeding documents
and queries to encoder and decoder inputs respectively, and using the cross-attention mecha-
nism between encoder and decoder components (also known as the encoder-decoder attention)
to learn a relevance score for a query-document pair.

In order to resolve our challenges, we have focused our work on the following research ques-
tions:

RQ1 Do generative tasks improve discriminative retrieval models?

RQ2 Which neural network architectures (i.e., encoder-only or encoder-decoder) produce more
effective joint discriminative and generative relevance models?
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RQ3 Are the resulting models easily transferable to other retrieval tasks?

In summary, our experimental results support our hypothesis that discriminative neural
ranking models can be generalized using generative tasks and importantly, does not rely on a
specific architectural configuration. This generalization leads to significant improvement across
models and collections for both precision- and recall-oriented metrics. Our experiments also
highlight the significant impact of such a joint modeling on other task-transfer scenario.

BACKGROUND

GENERATIVE AND DISCRIMINATIVE MODELS

The key motivation for using query generation to improve ranking models is the strong connec-
tion to the concept of discriminative and generative models. The terminology is better explained
through examples. Consider the task shown in Figure 5.1 which aims to classify dogs and cats.
In Figure 5.1a, a discriminative approach, similar to a human, fulfills the task by showing its
answer directly — the probability of the image being a dog is 0.8 and thus the answer is “dog”.
A discriminative model often achieves the answer by identifying discriminative patterns in the
image. A generative approach is more indirect. It first tries to draw pictures of a dog and a cat
(thus “generative”), and asks “What are the chances of drawing a dog/cat like the target image?”,
as shown in Figure 5.1b. Since drawing a dog is more likely to result in the target picture, the
mode is more confident that “dog” is the correct answer. This is not very intuitive from a human
perspective. Why do we make the distinctions? The reason lies in how we factor the task using
probability theory, which we will further discuss in the next section.

However, while drawing a dog or a cat is hard, the process of learning to draw makes us
understand better about the characteristics of a dog and a cat, and reinforces our knowledge in
the long run, or in other words, results in more generalized models. We believe this intuition
applies to discriminative and generative models as well. Discriminative models are powerful
when numerous training instances are available, but the signals contained in the generation
process is also important.

Key Concepts. Discriminative and generative approaches are two of the fundamental methods
used in statistical classification problems. As the name suggests, discriminative models discrim-
inate data instances directly. They usually produce probabilities of data instances belonging to
pre-defined classes. Generative models assume data instances are generated from given labels
and convert the generation probabilities into classification probabilities through Bayes’ Rule.
More formally, given a data instance X and a label Y, the classification objective is to pre-
dict the probabilities of the data instance belonging to a label P(Y|X). Discriminative models
can estimate this probability directly without further factorization. Generative models factor
P(Y|X) o« P(X|Y)P(Y), a conditional probability P(X|Y) and a prior probability P(Y). Genera-
tive models differ in the assumptions they make and how they estimate the factored probabilities.
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(b) A generative approach.

Figure 5.1: Discriminative and generative models in a classification task. The probabilities shown
are artificial for illustration purpose.

This distinction can have a significant empirical impact in an application. It is more challeng-
ing for generative models to precisely model the underlying distribution as it is maybe harder
to learn to draw a dog than telling the difference between a dog and a cat. Generative models
also make more assumptions in the intermediate steps to calculate probabilities, which can limit
accuracy especially when training data grows [46]. In practice, discriminative models are often
more favorable due to these reasons. In the machine learning domain, it has also been shown
that the discriminative models have lower asymptotic error as training data grows [142].

Generative and Discriminative Retrieval Models. We have reviewed retrieval models in
Sec 2.2. We can also categorize the probabilistic models into generative and discriminative classes.
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Figure 5.2: Discriminative and generative models in the context of relevance estimation. (Image
source: adapted with modification from https://people.cs.umass.edu/~zamani/cs646.)

This perspective also allows us to understand their advantages and disadvantages as have been
studied in machine learning.

Figure 5.2 shows the generative and discriminative methods in the context of relevance es-
timation. Early classic retrieval models are mostly generative models [139], as in the early days
the resource constraints (e.g. computing resource and training data) limits our ability to train a
high-accuracy discriminative retrieval model. Examples are the Binary Independence Retrieval
model [170], a Two-Poisson model [172], and Language models [160]. The Language Modeling
approach is arguably one of the most popular due to its theoretical foundations and empirical
success. Nowadays, Language Modeling is still one of the key components in the state-of-the-art
Transformer-based retrieval models.

Discriminative retrieval models, as described before, take a direct approach in estimating
relevance. These models often take as input a query feature vector and a document feature vec-
tor and directly produce the relevance probability. Typical examples are the maximum entropy
model [21], Rank-SVM [89], LambdaMART [27], and more recently neural ranking models [145].
Neural ranking models have been reviewed in Sec 2.3.

The properties of generative and discriminative retrieval models are summarized in Table 5.1.
Discriminative models are motivated by learning data patterns to distinguish them while gen-
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5.2.2

Table 5.1: Comparison of discriminative and generative retrieval models.

Discriminative Generative
Motivation Distinguish data  Generate data
Factorization P(R|D, Q) P(R|D, Q) « P(D,Q|R)P(R)
Relevance Estimation Direct Indirect
Modeling Assumptions None Have intermediate assumptions
Training Data Requirements High Low[46]
Expressiveness[139] High Low

erative models assume data are generated and use a more indirect approach. This difference is
articulated by Vapnik [200]: “...try to solve the problem directly and never solve a more general
problem as an intermediate step ...” Discriminative models can also easily incorporate arbitrary
features and automatically learn features such as word embeddings, which makes them more
expressive and flexible. However, discriminative models are highly dependent on training data.
Prior to the recent growth in neural ranking techniques, generative models have enjoyed greater
empirical success, and were valuable tools that capture relevance signals.

Generative Adversarial Networks. Most retrieval approaches focus primarily on improving
ranking effectiveness by optimizing either a discriminative or a generative retrieval model. IR-
GAN [207] also includes a discriminative and generative component which improves retrieval
effectiveness using a Generative Adversary Network (GAN) [74]. The IRGAN model formalizes
the retrieval problem as a min-max game where the discriminative and generative models com-
pete with each other - the generative model estimates the relevance distribution over signals
using the discriminative model and then the discriminative model uses the output from the gen-
erative model to produce a better estimate of document rankings. In the follow-up work, Zou
et al. [228] derive a theoretical analysis that connects the query reformulation and the document
ranking problem using a game-theoretical approach, which models the two tasks as a general-
sum game and a partnership game, respectively. Although related, this line of work differs from
ours in two key aspects: first, we rely primarily on multi-task learning where auxiliary tasks are
often considered as complementary to the main task, instead of a "competitor” in a GAN; sec-
ond, tasks in GAN-based approaches are strongly coupled. The discriminator must be carefully
designed to compete against the generator and the tasks involved are restricted to two due to the
design (one for discriminator and one for generator). In our framework, any number of loosely
related tasks can be easily incorporated to improve the main task.

MuiTi-TAsk LEARNING

Multi-Task Learning, as its name suggests, jointly learns multiple tasks. It is motivated by the
intuition that related tasks have mutually beneficial training signals. Formally, given a set of
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tasks 7 = {11, To, ... } and a set of loss functions £ = {Ly, L, ... }, the objective of MTL is to
minimize the joint loss

i Z ALi({6°, ' T)
where J; is the weight of each loss L;, 0°" is the shared parameters and ' is the independent
parameters of each task. This formulation highlights two major design choices in MTL: network
architecture (9" and ) and task balancing (1;) [118]. Network architecture is mainly about
sharing: “what to share” and “how to share” [225]. Task balancing focuses on the weights of
task losses. Learning related tasks together may help transfer the knowledge between tasks and
improve the overall performance. Recent pretrained language models have benefited from multi-
task learning.

The network architecture decides which part of the network is shared among tasks and which
are independent of each other. In fact, popular Transformer models BERT [57], BART [111], and
T5 [164] are all MTL models which introduced a common multi-tasking practice of adding new
heads on top of the underlying pretrained language model. When we apply MTL in this work,
we also follow this approach which is illustrated in Figure 5.4 and Figure 5.6 when we discuss
our methods.

Task balancing decides how each task contributes to the optimization of the model. The sim-
plest approach is using equal weights which is adopted by BERT [57], BART [111], and T5 [164].
Other approaches, according to Navon et al. [141], include GradNorm [32], Gradient Cosine Simi-
larity (GCS) [62], Uncertainty [97], and Dynamic Weight Averaging (DWA) [118]. These methods
are reported to be superior to others in different scenarios, but it is unclear which is the best one
for the ranking task. The Uncertainty method showed promising results in our preliminary ex-
periments and is simple and efficient compared to other adaptive approaches and thus is used in
this work. Exploring the weighting methods for IR tasks is another interesting line of research
but orthogonal to this work.

Multi-Task Learning in IR. Multi-task learning is another cornerstone of this chapter. It is
concerned with learning multiple related tasks jointly while transferring the common knowl-
edge across tasks. A large body of work explores applying multi-task learning (MTL) to retrieval
tasks. Broadly speaking, these approaches can be categorized into two types. Models in the first
category tries to learn similar functions for multiple tasks. For example, Nishida et al. [144] con-
sider both extractive question answering and document ranking tasks, which can both be cast to
classification tasks; both recommendation and retrieval tasks formulated by Liu et al. [120] are
ranking tasks; Salehi et al. [178] combined semantic classification and query segmentation. Stud-
ies in the second category learn common representations and adapt the learned model to other
domain-specific problems or heterogeneous tasks. For example, Bai et al. [7] leverage the MTL
approach to learn “super features” which can be applied to search tasks in different domains;
the method proposed by Liu et al. [121] learns a general representation by jointly learning from
both query classification and document ranking tasks; work has also been done in session-based
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5.2.3

retrieval [2, 3], where the goal is to represent query, document and users’ context using MTL. In
this work, the core idea is to select supplementary tasks from one category of tasks (generative)
and use it to improve models in another category (discriminative). More specifically, our main
focus is the retrieval model instead of representation learning, which may enable much more
flexibility when selecting auxiliary tasks to complement the model being targeted.

ATTENTION: A DIFFERENT PERSPECTIVE

We introduced the generalized attention mechanism in Sec 2.4.1 but did not discuss the difference
in self-attention and cross-attention which has important implications on dependency modeling,.
Now, we briefly revisit the attention mechanism from the dependency modeling perspective.

Encoder: Bidirectional Attention. An encoder transformer is broadly used for classification,
regression, and other related tasks. The core component of an encoder is the bidirectional at-
tention mechanism as illustrated in Figure 5.3a. Using ranking as an example, when we feed the
concatenation of a query and a document into an encoder, token embeddings are updated ac-
cording to the context of the entire sequence. Bidirectional attention can take full advantage of
the information not only within a query and a document but between them.

:%%

(a) Bidirectional (b) Unidirectional (c) Cross

Figure 5.3: An encoder implements bidirectional attention. A decoder implements unidirectional
attention and cross attention. Cross attention bridges an encoder to a decoder.

Decoder: Unidirectional and Cross Attention. Encoder-decoder transformers have decoders
in addition to encoders. The encoder-decoder transformers are primarily used in seq2seq tasks
which is an abstraction that maps one sequence of text to another. Examples are summarization,
machine translation, query generation, and question answering. A source sequence is fed into
the encoder. Then the decoder regressively produces new tokens conditioned on the source and
on past tokens that were generated. The generation process often repeats several times until an
end-of-sentence identifier is encountered or a pre-defined length limitation is reached. Formally,
given the source sequence X and a target sequence Y, the probability distribution of the next
token is conditioned on X and past tokens Y.;.

Y|
P(Y|X) = ]_[ P(yi|Y<i, X) (5.1)
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The regressive nature of the model is reflected in the attention design of the decoders. Within
a decoder, the self-attention is causal, or unidirectional, as in Figure 5.3b. A token can only attend
to past tokens. This property corresponds to conditioning on Y.; in Eq 5.1. Following the unidi-
rectional attention is cross attention (Figure 5.3c) where the model conditions on the source input
X as in Eq 5.1. The various attention mechanisms illustrate the fundamental difference between
an encoder transformer and a decoder transformer.

5.3 JoINT DISCRIMINATIVE AND GENERATIVE RETRIEVAL USING MTL

5.3.1

In this section, we introduce our GDMTL (Joint Discriminative and Generative Retrieval Model
with Multi-Task Learning) framework for improving discriminative retrieval models using gen-
erative tasks in Sec 5.3.1, then in Sec 5.3.2 and Sec 5.3.3 we describe how we implement each
component of that general framework using Transformer networks and unify the different re-
quirements of discriminative and generative models.

GDMTL FRAMEWORK

The GDMTL framework combines the ideas of discriminative and generative retrieval models
using multi-task learning. In more detail, the framework simultaneously optimizes two different
objectives: (1) one objective for a discriminative retrieval model, and (2) one set of objectives for
generative tasks. GDMTL may contain multiple generative tasks. In the next section, our exper-
iments will provide empirical evidence that two generative tasks provides better generalization
for the discriminative retrieval model. We now formalize the GDMTL framework.

Problem Formulation. Let 7 = {(Q1, D1, R1), (Q2, Do, R2), - -+, (On, Dy, Rn)} be the train-
ing set for a ranking task with n training queries, in which Q; denotes the i query, and D; =
{Di1,Diz, -+, Dim,} denotes the set of documents for Q; in the training set. R; is a set contain-
ing ground truth relevance judgments, such that R;; represents the relevance judgment for the
query-document pair of (Q;, D;;). This task trains a ranking model that re-ranks the documents
in a given candidate document set D’ for a test query Q’.

GDMTL Overview. The GDMTL framework consists of a discriminative retrieval model My
(parameterized by ;) and a number of generative models M; : g € G (each parameterized by 6,),
where G is a set of all generative tasks that enrich the discriminative retrieval model. Without
loss of generality, we assume that relevance labels are binary, thus My estimates the probability of
the document D;; € D; being relevant to the query Q; using P(R = 1|Q;, D;;j) = Ma(Q;, Dij; 04),
where R is a binary random variable. This can be easily extended to graded relevance labels.
With the ground truth relevance labels R;, the parameters 6; are learned by minimizing a loss
La(04; Qi, Di, R;). The total loss function is computed by averaging L, for all queries in 7.

In contrast, each generative model M; : g € G estimates the probability of a target text
T being generated from a source text s: P(T|S;0,) = M,(S;0,). The parameters 0, are opti-
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mized using a different loss Ly(0,; T, S). The question now is: How are T and S related to the
training set 7 ? One reasonable approach, which is mainly used throughout this chapter, is to
use relevant documents as source texts and queries as target texts. This casts the problem to
a query generation retrieval model, similar to query likelihood [160] and doc2query [146]. In
summary, one way of modeling this component is to compute the query generation probabil-
ity P(Qi|Djj, Rij = 1;6,) = My(D;j; 04, R;j = 1). Thus, the loss function of this part would be
Ly(64; Qi, Dij, Rij). As discussed previously, we have designed GDMTL such that it can optimize
multiple generative tasks. Multiple generative tasks in addition to query generation can be used,
such as question generation based on QA data (e.g., generating questions from answer docu-
ments) and anchor text generation based on a hyperlink graph from Web data.

Using multi-task learning, parameters are split into shared and independent model-specific
parameters. Therefore, 65 and 0, : g € G share the parameters 6;j,. The resulting loss function is:

L =waLa(0a) + ) wyLy(6) (5.2)
geG

where wy and wy : g € G are the weights assigned to the respective losses.

Implementing the Loss. The discriminator loss Ly can be modeled as either a point-wise, pair-
wise, or list-wise loss function. Without loss of generality, in our experiments, Hinge loss is used
for pair-wise ranking. For a pair of document candidates D;;, Dix € D; for the query Q;, the
discriminator loss function is defined as follows:

Lq(04; Qi, Di, Ri)

1
=~ Z max {O, € —sign(R;; — Rix)
1<j,k<m;
Tij#Tik

(Mg (Qi, Dij; 0a) — Mg (Qi, Dix; 64)) } (53)

where Z is a normalization factor and is equal to the number of training pairs for the query g;. €
is a hyper-parameter for the Hinge loss and is set to 1 for binary relevance labels.

The generative loss L, : g € G is defined using a cross entropy loss function as in the seq2seq
model [194], and is equivalent to maximizing the likelihood of generating the target sequences
observed in the training data. The generative loss for a query generation task is:

1
Ly(04;Qi, Di, R;i) = 7 Z P(QilDjj, Rij = 1;0y) (5.4)
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where Z’ is a normalization factor and is equal to the number of relevant documents for the
query Q;. In the above loss function, P(Q;|D;j, R;; = 1; 6,) is computed as follows:

|Qi|
P(QilDyj, Rij = 150,) = = > log P(Q!1Q}, Q-+, 0!, D) (5.5)

t=1

where Q! denotes the t™ token in the query. This loss function estimates the likelihood of each
target token being generated given the input and all the previous tokens in the ground truth.
These probabilities are produces using the underlying model M.

Balancing Loss. As shown in Eq (5.2), the contributions of each task on updating the shared
parameters g, is controlled by the weights wy and wy : g € G. A straightforward approach to as-
sign loss weights is to treat them as hyper-parameters and tune them on a held-out validation set.
However, it is expensive and sometimes impractical to exhaustively explore the parameter space
when the training cost is high and there is more than one task, which reinforces the importance
of automatically learning these parameters.

In this work, the Uncertainty [97] weighting scheme is used to automatically learn the weights.
This method models the homoscedastic uncertainty of tasks, which represents the confidence in
the contributions from different tasks and is independent of the input data. Intuitively, if a task
has high uncertainty, our confidence is lower, and therefore the contribution to the joint loss is
reduced, and so on. We adopt a variation of the Uncertainty method by Liebel and Korner [113]
which has a modification to the regularization to avoid negative loss values. This makes Eq 5.6:

1
Luncertainty :FLd(') + log(l + 0'3)"'

- (5.6)
> Ly() +log(1+ )

2
geG 20-9

where os are learnable parameter modeling the uncertainty of the models. When the loss is
high, the uncertainty is high (but penalized by log(1+ o) for becoming too high), leading to low
contribution of the loss, avoiding the gradients of this model dominating the training, and vice
versa. Please refer to Kendall et al. [97] for further rationale in these formulations.

ARCHITECTURE [: ENCODER-ONLY GDMTL

The proposed GDMTL framework can be implemented using two different general architectures.
The architectural choice of multi-task learning models affects how the shared parameters are
optimized. In this subsection, we show how to implement My and M, in a unified encoder archi-
tecture. My can be implemented using a neural network encoder that learns a representation for
a query Q; and a document D;;. This representation is then used to produce a relevance score
for the given query-document pair. For example, a common approach is to concatenate query
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and document tokens using a beginning and separation token and feed it to a pretrained BERT
variant [57] (i.e., the encoder). The representation produced by BERT for the beginning token is
then fed to a fully-connected layer to output the relevance score [145, 153].

Challenges in Modeling Seq2seq Using Encoders. Although an encoder-only architecture
fits well with a discriminative ranking model, modeling generative tasks with no decoder is not
straightforward since there is no longer an autoregressive component for text generation. To ad-
dress this issue, we adapt the idea of predicting masked input, similar to that of masked language
model (MLM) training as in BERT [57]. More specifically, M, can be modeled by masking all input
query tokens and using the associated output representations to predict them. However, there is
an important limitation when using MLM - it does not scale when using long spans. As a point
of reference, Joshi et al. [92] proposed spanBERT which extends BERT by masking contiguous
random spans. In their work, the mean span length is 3.8 tokens. However, the average num-
ber of words (before WordPiece tokenization) of MS-MARCO training queries is 7.4. We have
conducted experiments using MLM and found that training converges prematurely, and has re-
duced overall performance. The limitations of this approach for our task is intuitive in retrospect.
Casting query generation to the MLM task is akin to asking the model to generate a few tokens
without having access to the previous tokens that were generated. This can be further improved
by combining ideas from seq2seq and MLM training. However, we cannot fully adapt a seq2seq
training strategy because of the bidirectional attentions in BERT layers; otherwise, computing
the loss function for generating each token would depend on the future tokens to be generated.
A solution to this problem is to convert each text generation training instance to t training in-
stance, where t denotes the number of tokens in the target text. In this case, the first training
instance has all the masked tokens for all target inputs and the loss function is only computed
when generating the first token; the second training instance, on the other hand, would have the
first target token as input with masked tokens for the rest and the loss function would be only
computed for generating the second token; and so on.

We now present a new attention mechanism we call mixed attention, that theoretically pro-
duces in the same loss and gradient values, but is easier to train in practice.

Mixed Attention. To overcome the aforementioned difficulties, we propose a mix of bidirec-
tional attention, unidirectional attention, and cross attention to support seq2seq tasks in our
encoder architecture. Figure 5.5a shows how mixed attention combines the three attention mech-
anisms into one: the document tokens (light blue) can fully attend to themselves (bidirectional
attention), the query tokens (light green) can attend to the past query tokens (unidirectional
attention), and the document tokens (cross attention).!

IThe proposed mixed attention can be considered as a special case of the masked attention as used in other work
such as Zeng and Nie [222]. We would like to note that the proposed mixed attention was developed independently
of other work.
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Figure 5.4: The MTL encoder incorporates generation tasks using mixed attention. The model
fully attends a document but only attends backwards for a query, imitating the behavior of a
decoder. bsz: batch size; tgt_len: target sequence length; seq_len: total sequence length; dim:
embedding size; vocab_size: vocabulary size.

Formally, let D denote a document, the contextualized embeddings of token ¢ of a document-
query pair after mixed attention can be expressed as follows:

DI _exp(gik)) .
S s, ift < |D|
Ejzl eXp(qtk!) (5 7)

t—1 exp(q;k;) * ’

i=IDl+1 ST exp(giky) 1

zZr =
otherwise

where ¢*, k*, and v* represent query, key and value vectors of the attention mechanism, respec-
tively.

Mixed attention can be implemented by modifying the attention masks without changing the
vectorized attention computations. This allows us to apply mixed attention to existing pretrained
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Transformer models. Properties of the special mask is shown in Figure 5.5b. The bidirectional
attention mask is a 3 X 3 all-one matrix (purple), the unidirectional attention mask is a 3 X 3
lower triangular matrix (blue) and the cross attention mask is also a 3 X 3 all-one matrix (yellow).
Combining them results in the mixed attention mask.

Now we consider how mixed attention can be stacked as transformers often contain multiple
attention blocks. One important property of unidirectional attention is that it can be stacked
arbitrarily in a decoder transformer without leaking labels. This property is retained in mixed
attention, as shown in Figure 5.5a. The query tokens in the top layer represented with light green
attend past query tokens in the middle layer which regressively attend solely to past query tokens
in the bottom layer. Thus, mixed attention can be used safely in an encoder to imitate complete
encoder-decoder behaviors.

Model Implementation using Mixed Attention. Using mixed attention, we can extend an
encoder Transformer to implement discriminative and generative retrieval models using multi-
task learning, as shown in Figure 5.4. For ranking, the model takes the concatenation of the
document and query as input. An embedding produced from the “[CLS]” token is fed into a feed-
forward layer to produce a score for the input pair (Ranking Head in Fig 5.4). For query genera-
tion, we also concatenate the document and the query as input into the model, but apply mixed
attention instead of bidirectional attention to imitate encoder-decoder behavior. This model pro-
duces the next token probabilities for a target input using the Generation head. The model can
easily be extended by adding additional heads, as is now common practice in multi-task learning
regimes. We refer to this implementation as GDMTL in later sections.

di d2 d3 ¢1 g2 g3

000
- I L 7 ' AN B N AEREEE
eaewl 0]
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(a) Mixed Attention of bidirectional (purple),
cross (yellow) and unidirectional (blue) atten-
tion.

(b) Mixed Attention Mask. Each row represents
a token attending to other tokens with filled
boxes. For example, d; can attend to d; to ds;
q2 can attend to d; to ga.

Figure 5.5: Mixed attention imitates bidirectional, unidirectional and cross attention behaviors.
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ARCHITECTURE II: ENCODER-DECODER GDMTL
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Figure 5.6: An MTL encoder-decoder architecture that combines ranking tasks and generation
tasks. bsz: batch size; tgt_len: target sequence length; src_len: source sequence length; dim: em-
bedding size; vocab_size: vocabulary size.

In this subsection, we present an alternative solution to implement the GDMTL framework
using an encoder-decoder architecture. It is less common to use such an architecture for ranking
tasks, as encoder-only architectures are reasonable decoders and are most valuable for autore-
gressive generation tasks where each prediction depends on the previous one. However, unlike
an encoder-only architectures, encoder-decoders make it simpler to model generative models
M.

That said, an encoder-decoder Transformer can also be used for ranking. As discussed in
Section 5.2, Raffel et al. [164] feed the same concatenation of the query and the document to
both the encoder and the decoder and fine-tune the model to predict “True” and “False” literals.
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5.4.1

We also adapt an encoder-decoder Transformer with multiple attention heads, as shown in
Figure 5.6. In our proposal, the model produces a score with the Ranking head and sequences of
generated text with the Generation heads. For ranking, the encoder takes the document as input
and the decoder takes the query as input, and the prediction of the next token for the entire
sequence is fed into a feed-forward layer. Note that, in contrast to an encoder Transformer, the
first token cannot be regarded as a complete sentence representation given the decoder limitation
of having only unidirectional attention. So, only the last input token has access to the entire
sequence, and can be used to fine-tune the model. For query generation, the model produces a
distribution over the entire vocabulary for each token in a target instance. Thankfully, we can
use pretrained encoder-decoders, such as BART [111], and take advantage of self-supervision
pretraining. We refer to this model as GDMTLs in later sections.

We also propose a variation of BART for ranking. Instead of feeding separate documents and
queries into the encoder and decoder, they are concatenated and feed to both the encoder and
decoder. Then the model is fine-tuned as have described. This variation is referred to as GDMTL¢
in later sections.

EXPERIMENTAL SETUP

DATASET

We use two datasets to evaluate our methods: MS-MARCO and CAsT 2019.

MS-MARCO Passage. For passage retrieval, we use MS-MARCO, which consists of 1 mil-
lion queries sampled from Bing search logs and 8.8 million passages extracted from web doc-
uments [143]. The queries are split into train, dev, and eval sets by the organizers. The training
set contains around 532k relevant query-document pairs, the majority of which have only one
relevance assessment per query (95% of training queries have a single passage assessment). The
dev set contains 6,980 queries, 6,950 of which have one relevant passage. Model evaluation is
performed using the dev set and 5-fold cross validation. It is not possible to use the eval set since
the judgments are not publicly available.

CAsT 2019. We also use CAsT 2019, which is a conversational search task consisting of two
document collections: MS-MARCO and TREC CAR (Washington Post Collection was originally
included but not used in the final evaluation by the organizers). Here we use the MS-MARCO
subset to evaluate the effectiveness improvement and use the TREC CAR subset to evaluate our
model generalizability. The CAsT 2019 test collection contains 20 multi-turn sessions. Within a
session, multiple queries are issued for an information need. We use the resolved queries provided
by organizers in our experiments since our focus is on the ad-hoc retrieval task, and not co-
reference resolution as in the conversational case. The resulting experimental dataset contains
173 queries and 2,983 relevant passages. We perform cross validation at the session level instead
of query level as the queries are not i.i.d. due to the intentional session-level dependency. We
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use the GroupKFold algorithm from sklearn ? to guarantee that queries in the same session are
in the same fold. In each evaluation iteration, we use three folds for training, one for validation
and one for testing.

MS-MARCO QA. We also use the MS-MARCO QA dataset in the question-answering task as an
auxiliary generative dataset. This dataset has overlapping queries and relevant passages as found
in the passage ranking task. In addition, it contains human crafted answers derived manually
from relevant passages. We use them as the target of the generative task.

Task SETUP

Retrieval Task. We use the MS-MARCO and CAsT 2019 dataset for the retrieval task. We use
Anserini toolkit for indexing and first-stage retrieval, BM25 tuned for recall based on 1,000 ran-
domly sampled queries from the training set. The MS-MARCO corpus is enriched with DeepCT
[50] for first-stage retrieval only. For each query we retrieve 1,000 documents for second-stage
re-ranking. All the ranking models we use in this work are summarized in Table 5.2.

Table 5.2: Model notations.

Notation  Description

mono monoBERT ranking model from Nogueira and Cho [145]
and Nogueira et al. [147]

BERT BERT ranking model (our implementation)
GDMTL  Our multi-task encoder model: ranking and query genera-
tion

GDMTL+  Our multi-task encoder model with 3 tasks: ranking, query
generation, question answering

BARTs BART ranking model using separated passage and query in-
put

GDMTLs  Our multi-task encoder-decoder model using separated pas-
sage and query input

BARTc BART ranking model using concatenated passage and query
input

GDMTLc  Our multi-task encoder-decoder model using concatenated
passage and query input

Generative Tasks. We now explore the use of two auxiliary tasks, which are query generation
and question-answering. For the auxiliary query generation task, we take advantage of known

2https://scikit-learn.org
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query-document pairs using qrel data. That is, we use the training data in two different forms
and combine them using MTL techniques. The query-document pairs are used for seq2seq tasks.
The document is the source sequence and the query is the target sequence. Nogueira et al. [148]
also used query-document pairs similarly, but their goal was to predict queries for passage/sum-
mary enrichment. We also use the MS-MARCO QA dataset by converting the data into a seq2seq
format for MTL training by concatenating the query and the relevant passage as the source se-
quence and use the human written answer as the target sequence, which is similar to conditioned
summarization [65].

Task Conditioning. Task conditioning is a crucial component in achieving effective MTL. The
approach we take is similar to T5 [164], where special task identifiers are added at the beginning
of input sequences. For example, rank: is added for ranking tasks. The input for ranking becomes:
rank: <passage> <query>. In this work, we use the identifier “rank:” for ranking, “sum:” for query
generation, and “answer:” for question-answering. The specific text for task conditioning is arbi-
trary as long as it is unique for each task. During training, two or three heads are used depending
on the number of generative tasks used as input. For inference, we ignore the seq2seq heads and
use only the ranking output layer.

TRAINING METHOD

One training instance contains one query, one positive document and one negative document
(and one answer for the query if we use the QA task). We summarize in Table 5.3 how we feed the
three components into the models. The principles applied are intuitive. For encoders sequences
need to be concatenated while for encoder-decoders there are two ways to feed queries and
passages for ranking, separately or concatenated, as the names GDMTLg and GDMTL¢ suggest.

Table 5.3: Model inputs. P represents passage; Q represents query; A represents answer; @ repre-
sents concatenation. Encoders require the sequences to be concatenated. Encoder-decoders have
two ways to feed queries and passages for ranking, separately or concatenated.

Ranking Input Generative Input
Encoder Decoder Encoder Decoder
mono PoQ - - -
BERT PaQ - - -
GDMTL  P&Q - PoQ -
GDMTL+ PaQ - P®Q or PEQ®A -
BART; P Q - -
GDMTLs P Q P Q

BARTc  P&Q PaQ - -
GDMTLc Pa&Q P&Q P 0
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Using GDMTL as an example, we first use the concatenation of the document and the query
as input and calculate ranking loss using Eq 5.3. Then we use the concatenation of the positive
document-query pair only and instruct the model to use mixed attention and calculate the gen-
erative task loss using Eq 5.4. The two losses are weighted according to their uncertainty and
summed up for back-propagation.

MoDEL IMPLEMENTATION

In this experiment, we use BERT as the encoder-only architecture and BART as the encoder-
decoder architecture, but our approach is easily amenable to any similar transformer architecture
such as the ones made available by Hugging Face.> We implement a single task learning (STL)
baseline and all MTL approaches using Transformers* and PyTorch library. All models are trained
using mixed-precision floating point arithmetic on two NVIDIA V100-32GB GPUs. We use the
AdamW [122] optimizer with B; = 0.9, B, = 0.999, and weight_decay = 5e™> for training. We
have observed that training works best when using small learning rates (the name finetuning is
a clue), and have set our learning rate accordingly to 2e~>. We use a linear scheduler to adjust the
learning rate step-wise with a one epoch warm-up and decays linearly to a minimum value of
1e~®. All models are trained for 10 epochs, and final epoch selection is a hyper-parameter decided
during cross-validation.

For ranking tasks, the length of the input sequence is limited to 256 tokens. For seq2seq tasks,
the length of the encoder input is limited to 256 tokens and the decoder input to 56 tokens. We
do not use a maximum length of 512 tokens as the default, since the average length of the MS-
MARCO training passages is 91 terms and the average length of the training queries are around
6 terms. Setting the maximum length greater than 256 results in no measurable differences in
effectiveness and increases training costs, so we have limited it. Due to data alignment constraints
in GPUs, token padding tends to lower computational throughout but is ultimately discarded at
aggregation time when using short input sequences. For other details, see the code repository
for this work which is publicly available. °

Baseline Performance. Before diving into the results, we present a baseline implementation
BERT using monoBERT [145, 147] as a reference since they are conceptually similar. We apply
two-stage retrieval in our experiments: BM25 as the first stage ranker to retrieve top 1,000 pas-
sages, and then neural ranking models as the second stage ranker for re-ranking. Note that we use
the base version of both BERT and BART, which have 110M and 139M parameters respectively,
while monoBERT is derived using a“large” BERT model which contains 340M parameters.

Our new implementation of BERT significantly outperforms monoBERT for all effectiveness
metrics we tested at the p < 0.01 level, which is shown in Table 5.4. There are several implemen-
tation differences between BERT and monoBERT, and we are unable to attribute the effectiveness

3https://huggingface.co
4https://github.com/huggingface/transformers
Shttps://github.com/binshengliu/gdmtl
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differences to any one of these. Our best conjecture is that we have trained our model using a
pair-wise loss while monoBERT used a point-wise. This outcome does not agree with the previ-
ous findings of Han et al. [78] who found only small difference between the two approaches for
the MS-MARCO collection. Exploring the differences further is beyond the scope of this work as
it is orthogonal to our primary aims. Our code is available if anyone wishes to explore it further.

These preliminary results show that competitive baselines are being used to benchmark our
new approaches.

RESULTS AND ANALYSIS

In this section, we attempt resolve our original research questions. In Sec 5.5.1 we test if our
approach improves retrieval effectiveness on two different test sets and provide failure analysis.
In Sec 5.5.2 we test if our approach can generalize well with different training and testing distri-
butions. Then in Sec 5.5.3, we provide some other related analysis. Finally, in Sec 5.5.4 we discuss
the impact of implementing MTL when using different architectures.

IMPROVING RANKING EFFECTIVENESS

RQ1. Do generative tasks improve discriminative retrieval models?

We first answer RQ1 by experimenting using MS-MARCO and CAsT 2019 test queries, each
of which have different properties. MS-MARCO contains thousands of queries with shallow judg-
ments while CAsT 2019 has fewer queries and deep judgments. MS-MARCO also contains several
related tasks such as Question-Answering and Query Categorization in addition to the ranking
task. Results using query generation and the QA tasks as the auxiliary tasks are provided for
MS-MARCO, and include a further analysis using query categorization.

Table 5.4: Retrieval performance of STL and MTL models on MS-MARCO. 4 and 4 indicate sta-
tistical significance at p < 0.05 and p < 0.01 over BERT with Holm-Bonferroni correction, re-
spectively.

MRR NDCG RBP
10 100 10 20 0.5 0.8
BERT 0.384 0.393 0.448 0.471 0.177 +0.823  0.099 +0.901

GDMTL 0.3924+ 0.401+ 0.454~ 0.476~ 0.182 +0.818+ 0.101 +0.899~
GDMTL+ 0.394+ 0.4034+ 0.458+ 0.480» 0.182 +0.818+ 0.101 +0.899+

BM25 0.244v 0.256v 0.299v 0.324v 0.108 +0.892Y 0.067 +0.933"
mono 0.372v 0.381v 0.433v 0.455" 0.172 +0.828" 0.096 +0.904~

MS-MARCO. We begin our analysis with a head-to-head comparison of single task and multi-
task learning as described in the previous section using MS-MARCO. Table 5.4 summarizes the
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performance comparisons when incorporating the query generation task into GDMTL. We found
that the GDMTL and GDMTL+ models significantly outperform their STL counterpart BERT for
every metric, showing that the addition of the generative task can improve the performance
of a discriminative ranking model. In the next section, we will more exhaustively analyze how
different generative tasks reinforce different aspects in the discriminative ranking model task,
which translated to the improved performance we observe here.

When we consider the addition of a third task, such as the QA task, GDMTL+ shows even
more improvement across all the effectiveness metrics tested. The QA dataset reinforces the
model by providing additional information that connect queries and the most important part of
the passage. Consider the example query “what county is columbus city in”, the passage “Colum-
bus is a city in [...] Bartholomew County [...]. The population was [...]” which is very general
description, and the answer “Columbus is a city in Bartholomew County.” The final answer fo-
cuses the attention on the most important words in the passage and thus further strengthens
contextual information in the model.

Table 5.5: Pair-wise win/tie/loss analysis on MS-MARCO dev set based on MRR@10, indicating
the number of queries being improved, unchanged (within 10%), and hurt. The comparing base
is listed in the headers.

mono BERT GDMTL
W T L W T L w T L
BERT 1735 3775 1470 - -

GDMTL 1755 3805 1420 1375 4333 1272 -
GDMTL+ 1827 3764 1389 1445 4281 1254 1317 4459 1204

In Table 5.5 we show the MRR@10 comparison using monoBERT, BERT, GDMTL, and GDMTL+

as a pairwise win/tie/loss comparison. The trend is consistent across all the comparisons. From
top to bottom, more queries get improved than are degraded as more tasks are added. From left
to right, it is also clear that when the base system is more competitive, it becomes harder to get
any large improvements.

We also analyze all the document ranking changes between BERT and MTL systems in Fig-
ure 5.7. Here, GDMTL and GDMTL+ rank 71 and 74 more documents respectively at position 1
than BERT. Note that BERT already achieves a perfect score for 26% of all queries, with nearly
50% of all queries retrieving a relevant passage in the top 3 positions, which means in practical
terms that dramatic improvements for BERT are not possible as there are few opportunities to
achieve big gains. Nevertheless, it is clear that GDMTL and GDMTL+ do in fact consistently rank
relevant documents at higher positions than BERT alone.

Caveats. We must also note that the residuals shown in Table 5.4 are unacceptably high, even
when using RBP, p = 0.5 which is analogous to MRR. This suggests that many of the results
returned in higher positions for each query are unjudged, and we can therefore not be sure
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Figure 5.7: Rank position changes for relevant documents between BERT and MTL systems.
Each bar on the right represents more documents added to a rank position. Conversely, bars on
the left indicate that more documents moved from this position to another than were added. The
more documents added to higher positions, the higher the overall effectiveness.

they are not relevant. As there is generally a single positive judgment provided for each query,
this should not be surprising, and of course applies to all experimental studies appearing in the
literature using the MS-MARCO collection. Nevertheless, residuals of this magnitude dictate that
fine-grained comparisons must be interpreted with caution. In this work, we are most interested
in comparing relative trends between closely related models in order to understand how multi-
task learning can be used to improve model quality, and not in achieving the most competitive
result for any particular collection, and is therefore sufficient for our current needs. This is an
important problem that does warrant further analysis in the future.

Per-Category Breakdown Analysis. MS-MARCO also provides query categorization, so we
can analyze where MTL exhibits the most benefit. Table 5.6 shows that Numeric, Location and
Person queries tend to be highly effective with no MTL. These queries are relatively straightfor-
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ward and can usually be resolved using the keywords. Thus, they do not rely heavily on semantic
understanding. Results for Entity queries are somewhat surprising. Therefore, we manually in-
spected a few of these queries. This qualitative analysis suggests that some answer passages are
not as easy to identify as one might think. For example, the entity query “what can help dogs
sleep” also implies that passages on “why” dogs cannot sleep are also relevant. In this case, the
answer preferred by the assessor were about “aches and pains” in dogs, with “aspirin” being the
remedy proposed, with sleep problems being a symptom of the condition being discussed in the
passage. Another entity query “highest dosage of aspirin” also cannot be simply answered with
one keyword. The answer also depends on contextual information such as age and any related
health conditions. Ultimately, a single passage selected by the original assessor is known and why
it was ultimately selected is open to interpretation, and requires caution, as there are clearly other
passages being returned that may or may not also be relevant, as alluded to by the RBP residuals
discussed above. It is clear the Entity queries seem to be more difficult for this collection. The
last type of query is a Description query. These queries often require longer answers and thus
have the highest demand of semantic learning, for example “what does the chief administrator
do”. Description queries benefit the most when using MTL, and is in line with our expectations.

Table 5.6: MRR@10 of STL and MTL models on MS-MARCO by query type. 4 and 4 indicate
statistical significance at p < 0.05 and p < 0.01 over BERT with Holm-Bonferroni correction.

Description Numeric Entity Location Person
(53.12%) (26.12%)  (8.81%)  (6.17%)  (5.78%)

BERT 0.369 0.391 0.344 0.473 0.443
GDMTL 0.377 0.395 0.361 0.489 0.441
GDMTL+ 0.3832 0.395 0.351 0.489 0.439

Enriching the model with query generation and question answering tasks strengthens semantic
and contextual dependencies in the model. Small perturbations when training the model improve
performance for complex queries.

CAsT 2019. Table 5.7 provides a summary level effectiveness comparison when applying our
models on the new test collection, and more detailed the win/tie/loss analysis for CAsT 2019 is
shown in Table 5.8. Note is not a corresponding QA dataset for CAsT 2019 queries, so we could
not test the GDMTL+ model. Nevertheless, the overall trend is consistent in MS-MARCO albeit
with larger margins. Since CAsT 2019 includes graded relevance judgments, the rank position
comparison shown for MS-MARCO may be less informative as measures such as NDCG tend to
combine rank, grades, and gain functions such that the score is an aggregate of every document
shift, and not just the highest ranking one. So, we have plotted the per query differences for
NDCG@10 when using BERT and GDMTL instead, which is shown in Figure 5.8. This figure
shows that the total number of wins with GDMTL is higher, and each of the differences tends to
be larger on average.

+*
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Table 5.7: Retrieval performance of STL and MTL models on CAsT 2019. 2 and 4 indicate statis-
tical significance with p < 0.05 and p < 0.01 over corresponding BERT with Holm-Bonferroni
correction.

MRR NDCG RBP
10 100 10 20 0.5 0.8

BERT 0.544 0.550 0.405 0.428 0.366 +0.286  0.317 +0.355
GDMTL 0.5904 0.595~ 0.4314 0.4512 0.419 +0.2364 0.341 +0.3304

BM25 0.474v 0.479¥ 0.331v 0.346v 0.331 +0.259  0.284 +0.361"

Table 5.8: Pair-wise win/tie/loss analysis on CAsT 2019 based on NDCG@10, indicating the
number of queries being improved, unchanged (within 10%), and hurt.

BM25 BERT
W TUL WTL

BERT 87 39 47 -
GDMTL 93 41 39 65 59 49

5.5.2 IMPROVING MODEL GENERALIZABILITY

RQ3. Are the resulting models easily transferable to other retrieval tasks?

In this section, we discuss preliminary results on task-based transfer learning. We use our
model trained on MS-MARCO and the queries from the CAsT 2019 collection, as shown in Ta-
ble 5.9.

Table 5.9: Retrieval performance of transferring models from MS-MARCO to CAsT 2019. » and
+ indicate statistical significance with p < 0.05 and p < 0.01 over BERT with Holm-Bonferroni

correction.
MRR NDCG RBP
10 100 10 20 0.5 0.8
BERT 0.617 0.617 0.486 0.490 0.470 +0.230 0.392 +0.318

GDMTL 0.656 0.651 0.495 0.510 0.483 +0.231  0.402 +0.307
GDMTL+ 0.6864 0.6832~ 0.498 0.498 0.514 +0.2022  0.409 +0.301

BM25 0.474v 0.479v 0.331v 0.346v 0.331 +0.259v 0.284 +0.361"

Again, care must be taken when interpreting these results. As shown in Table 5.10, queries
share a common information need and have overlapping qrels. A similar observation can be
made in other tasks that use the MS-MARCO collection, and is a point of discussion with the
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Figure 5.8: Per-query breakdown of NDCG@10 on CAsT 2019. Queries in descending order of
score difference.

organizers. The collection was created and maintained by Microsoft, and in live production en-
vironments, duplicates and near duplicates are common, especially in very large training sets
such as MS-MARCO. At any rate, the performance of the transfer models seem to be superior to
models that are trained independently for CAsT 2019. That is, all models tested showed similar
advantages, and we are most interested in a relative comparison here. When compared head-to-
head in identical scenarios, GDMTL and GDMTL+ are consistently more effective than BERT.

In Table 5.9, consistent improvements are observed but are only significant for MRR@10,
MRR@100 and RBP p = 0.5 for GDMTL+. The lack of significance for deeper metrics may be an
artifact of the shallow judgment pool, the near replicates in training data, or both. There are two
important factors to account for this phenomenon. First, 90% of the MS-MARCO training data has
only one relevant passage for training, while the CAsT 2019 queries have 17 relevant passages
on average. Second, the MS-MARCO judgments are binary, but the CAsT 2019 judgments are
graded. Such discrepancies may also contribute to a reduced overall performance when directly
transferring a model to a new task without any modification. We will explore this further in
future work.

ADDITIONAL RESULT ANALYSIS

Impact of Training Data Size. We now turn our attention to understanding what impact the
number of training instances has in our MTL model. In this analysis, we test our approaches
using samples of 75%, 50%, 25%, and 12.5% of the original MS-MARCO training data, while fixing
all other hyperparameters. In order to minimize noise from sampling, we apply top down subset
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Table 5.10: CAsT 2019 evaluation queries and MS-MARCO training queries share some infor-
mation needs.

Collection Topic Rel Doc

CAsT 2019 69_6: What are the side effects of melatonin? 97921
MS-MARCO 564795: what are side effects of melatonin pills 97921

CAsT 2019  67_8: What are anemia’s possible causes? 883439
MS-MARCO 556252: what are causes of very bad anemia 883439

CAsT 2019  31_7: What is the first sign of throat cancer? 7035854
MS-MARCO  574369: what are the symptoms of throat cancer 7035854

sampling. For example, we take 75% from the original set, and then take 66.7% from the 75%
subset to create the 50% set and so on. We do not run the same experiment using CAsT 2019 as
the total number of training instances is too small.

0.392, pvalue =0.003

0.39 -BERT
0.384 GDMTL
g 0.38 s Tvai =5
& 0.372 0.372
=037 0.366, pvalue = 0.007
0.36 0.359
100% 75% 50% 25%

Training data size

Figure 5.9: MTL consistently improves the model as the number of training instances is in-
creased.

Results are shown in Figure 5.9. Regardless of training set size, GDMTL consistently outper-
forms BERT. The improvements are significant except when a 50% sample of training data was
used. So, our initial experiments suggest that MTL can be benefit even in cases where the training
data is limited.
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Score Distributions. In term-based retrieval systems, raw retrieval scores across queries are
often not comparable as they depend on query length. For example, query likelihood models
assign a score to a query-document pair P(Q|D) o [] o P(q|D) where g is a term in query Q and
D is a document. Longer queries produce lower scores. However, attention-based neural ranking
models apply normalization at attention aggregation time. Before the final prediction, the query
and the document are projected into sentence representations in a latent space, for example [CLS]
of BERT. The contribution of each token to the sentence representation is softmax-normalized,
so the different query lengths do not change the distribution of the prediction scores.
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(a) Score distributions for MS-MARCO.

[IBERT Non-relevant
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[IBERT Relevant
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(b) Score distributions for CAsT 2019.

Figure 5.10: Score distributions for MS-MARCO and CAsT 2019.

A plot of the histogram of scores produced using our models is shown in Figure 5.10. Relevant
documents are mainly on the right and non-relevant documents are on the left. More importantly,
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the figure indicates how MTL has made the models more discriminative by assigning lower scores
to non-relevant documents.

5.5.4 IMPACT OF ARCHITECTURES

RQ2. Which neural network architectures (i.e., encoder-only or encoder-decoder) produce more
effective joint discriminative and generative relevance models?

passage @ query passage query

(a) Encoder attention. (b) Encoder-decoder attention.

Figure 5.11: Encoder and encoder-decoder models require different interaction mapping (lines
between different colors) when including passage and query pairing.

As we discussed in Section 5.3, not only the task balance strategy can affect the performance
of an MTL framework, but also the underlying model architecture. In this experiment, we fo-
cus on two commonly used architectures for tasks: encoder-only (BERT) and encoder-decoder
(BART). For the STL models, BERT has higher retrieval effectiveness than BARTs. There are two
plausible reasons for this difference. First, BERT and BART are pretrained differently; second the
encoder-decoder architecture must separate query-document interactions across the two layers
as illustrated in Figure 5.11. In order to determine which of these contribute the most to the
performance differences we have observed, we attempted to increase query-document interac-
tion signals by feeding the concatenation of query and document into the BART encoder and
decoder (shown as BART¢ in Table 5.11). As we can see, inducing a stronger query document
interaction results in improved performance when compared with BARTs, where interactions
occur primarily in the decoder.

When including auxiliary query generation tasks, we can observe that GDMTLg can out-
perform BARTS; significantly, but GDMTL¢ also improves BARTc, but not as significantly. This
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Table 5.11: Retrieval performance of BART-based STL and MTL models on MS-MARCO. BERT
and GDMTL are listed as references. 4 and + indicate statistical significance with p < 0.05 and
p < 0.01 over BARTs with Holm-Bonferroni correction.

MRR NDCG RBP
10 100 10 20 0.5 0.8

BART; 0.370 0.380 0.436 0.460 0.170 +0.830  0.097 +0.903
GDMTLs 0.3824 0.392+ 0.445s+ 0.470» 0.176 +0.824s+  0.099 +0.9014

BARTc 0.385+ 0.394+ 0.451+ 0.474+ 0.178 +0.8224  0.100 +0.900+4
GDMTLc  0.3904 0.399+ 0.454s+ 0.478+ 0.180 +0.8204 0.101 +0.8994

BERT 0.384+ 0.3934+ 0.448+ 0.471+ 0.177 +0.8234  0.099 +0.9014
GDMTL 0.392+ 0.401+ 0.454+ 0.476+ 0.182 +0.818+ 0.101 +0.899+

is possibly caused by the different shape alignments required in the two tasks, as shown in
Table 5.2. We also observed that both GDMTL (corrected p = 0.0205, 95% confidence interval
[0.0038,0.0171]) and GDMTLc¢ (corrected p = 0.0260, 95% confidence interval [0.0029, 0.0141])
also outperform GDMTLg significantly for MRR@10 when compared directly, showing architec-
ture choices do have an important role when designing MTL models.

To summarize, BERT and BART¢ achieve similar performance when used only for ranking.
Both architectures benefit from incorporating generative tasks but GDMTL achieves the best re-
trieval effectiveness in our experimental setup. Using mixed attention, GDMTL is able to incorpo-
rate two heterogeneous tasks using unified inputs. In contrast, GDMTLs is also able to combine
multiple tasks in one model, but can suffer from the reduced query-document interactions due
to the architectural requirements. GDMTL¢ leverages additional query-document interactions,
but input shapes are more likely to be task specific. However, encoder-decoder transformers
(GDMTLs, GDMTLc) in general may be less suitable than encoder transformers (GDMTL) if the
primary goal is only ranking effectiveness, but may be a better choice for generation tasks, or if
your overall goal is to use all the task heads, and not just one.

GENERATION QUALITY

We have seen evidence that the query generation task has positive impacts on ranking effec-
tiveness. Now we examine how the ranking task impacts the effectiveness of query generation.
To perform the analysis, a new model BART; was trained with only the query generation task.
The GDMTLs model we introduced previously was trained with both the ranking and query
generation tasks. Now we denote it as GDMTLg since we focus on its generation capability.
We randomly sample 1000 query-document pairs from the dev set for the comparison. We
use BARTg and GDMTLs to generate 1000 queries respectively given the sampled documents.
These queries are used to re-rank the corresponding retrieval lists in the dev set. The results
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5.6

Table 5.12: Retrieval effectiveness of using generated queries for retrieval. No significant differ-
ence is observed.

MRR NDCG RBP
10 100 10 20 0.5 0.8

BARTg 0.486 0.494 0.549 0.568 0.226 +0.774 0.118 +0.882
GDMTLg 0.480 0.489 0.543 0.562 0.224 +0.776 0.118 +0.882

Table 5.13: Example queries generated by BARTg and GDMTLg.

Query
Original ~ heart rate increase during exercise
BARTGg why does your heart rate increase during exercise

GDMTLg how does heart rate increase during exercise

Original ~ does body fat weigh more than muscle
BARTG effects of too much body fat
GDMTLg how much body fat can you get

Original  how long do dissolvable stitches take
BARTGg how long for stitches to dissolve
GDMTLg how long to dissolve stitches after surgery

are shown in Table 5.12. No significant difference is observed according to the table. A win-
tie-loss analysis shows that GDMTLg wins 194 queries, ties 604 queries, and loses 202 queries.
However, the ranking task still shows impact on the final generation. Table 5.13 shows several
example queries. Overall, 978 and 984 queries are different from the original queries for BARTg
and GDMTLg respectively. Between BARTg and GDMTLg, 719 queries are different. Further
examining the significance of the difference is an interesting direction.

SUMMARY

In this chapter, we looked at query generation from a new point of view. We investigated meth-
ods of incorporating relevance signals in query generation into a ranking model. The relevance
signal contained in query generation can be observed from the Language Modeling retrieval
model where the generation probability is used for document ranking. The idea of combining
generation and ranking also builds on our current knowledge about probabilistic models in IR:
generative models and discriminative models. We have proposed the GDMTL framework, which
integrates generative and discriminative tasks via multi-task learning. Our framework exploits
readily available generative tasks such as query generation and QA tasks to improve discrim-
inative retrieval models. Our experiments have answered RQ1 affirmatively — generative tasks
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are indeed able to improve the performance of discriminative retrieval models. Regarding RQ2,
we have provided detailed comparisons between architectures which uncover additional insights
that allow us to better understand how MTL model differences are affecting performance. Finally,
for RQ3 we show that the models learned using our approach are easily transferable, which is
beneficial in new tasks where little training data may be available.

Several interesting open questions remain. First, we do not fully understand how generative
tasks modify model behaviors via attention and gradient-based analysis. Understanding what
attention learns is still an active research area. Some recent work has presented methods to an-
alyze the semantic meanings of attention [35]. Gradient-based analysis [193] explores how each
word contribute to the final prediction. These methods could possibly shed light on how query
generation signals are transferred into a ranking model. Second, we haven’t explored extend-
ing our method to long documents. Using Transformers on long documents is mainly limited by
Attention’s quadratic time and space complexity. Beltagy et al. [15], Hofstétter et al. [82] both
use smaller windows to reduce the computational cost. This also leads to another interesting as-
pect: efficiency. Khattab and Zaharia [98] delay the interactions between a query and a document
to improve efficiency. Improving Transformer efficiency is an open and challenging problem of
great practical importance.
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6 SUMMARY

Queries are the key to understanding a user’s information need, but they are surrounded by

may contain various issues impeding retrieval effectiveness such as spelling errors, vague or
ambiguous representations, and under-specified information needs. To better represent a user’s
information need, query optimization is often the tool of choice.

In this thesis, we first study extending a traditional query optimization technique: relevance
modeling in unstructured documents and structured documents. Web pages, product pages, job
listings, etc. all contain structural information which implies term importance. By leveraging
this structural information, we propose a field-based relevance modeling technique which is able
to induce relevance models from document fields, and a method to apply relevance models on
document fields. Our results show that retrieval effectiveness can be improved with this addition
information. However, relevance modeling of queries has obvious shortcomings. They are often
inefficient, uninterpretable, and tend to make small improvements for web documents.

We then conduct a user study to explore the value of completely rewriting a query. The
analysis is performed using human-written query variations and automatically generated queries
from a commercial search engine. Importantly, our analysis first shows that relevance models can
hardly achieve the same level of improvements as rewriting queries, indicating that remarkable
effectiveness gains are possible purely based on query rewriting. Both automatic techniques and
humans can generate effective queries, but effectiveness differences still exist. We need more
powerful generation models to achieve human-level quality.

To generate more effective queries, we then inspect leveraging state-of-the-art transformer
models for query generation which is a fundamental technique that can be used in various query
optimizations. Now we combine two important objectives: effectiveness from the IR community
and readability from the NLP community. Effectiveness is a core objective in IR while readability
is an important metric in query interpretability and transparency. As neural language processing
advances, we are better positioned to explore the readability of queries. We propose a novel task
— strong natural language query which aims at generating effective natural language queries. Our
solution consists of a supervised learning stage for readability training and a reinforcement learn-
ing stage for effectiveness training. First, readability is improved using abstractive summarization
data. However, a good summary is not necessarily a good query. So, we then use reinforcement
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6.1

learning to directly optimize for effectiveness metrics which are often non-differentiable. The
combined approach leads to the best trade-off between the two dimensions.

Finally, as natural language queries are common due to the increased popularity of voice
search and digital assistants, we explore jointly modeling ranking and query generation in a
multi-task learning framework to improve ranking effectiveness. The core idea is that under-
standing natural language queries and generating natural language queries share common knowl-
edge thus a joint modeling approach may benefit both sides. In the long history of IR, direct rank-
ing models such as an SVM and generation-based models such as query likelihood both showed
promising results in capturing relevance signals. Our first contribution is a framework which
combines both through multi-task learning techniques where knowledge is shared by common
parameters. Our second contribution is to implement the framework using transformers. Com-
bining ranking and query generation is difficult as they have different requirements on the model
architectures. First, we use an attention-based approach to incorporate query generation into an
encoder-only architecture. Second, we propose a method for using an encoder-decoder for rank-
ing. We are able to carry out joint modeling using either architecture. Our third contribution is
an in-depth failure analysis on the impact of transformer architectures on capturing relevance
signals.

FUTURE DIRECTIONS

Understanding Ranking in Transformers. Transformers often contain many layers that are
responsible for resolving different linguistic features. Clark et al. [35] used a visualization and
probing methods to understand how linguistic features are captured inside a transformer. They
found certain layers identify synonyms, certain layers resolve pronouns, certain layers detect
object of verbs (shown in Figure 6.1), certain layers are responsible for verbs, and so forth. While
these generalized linguistic knowledge is fascinating, how attention weights affect the final rel-
evance score is not clear at all. Is there a layer or a head that particularly attends to words that
are important for estimating ranking scores? Does multi-task learning (e.g. GDMTL) change atten-
tion weights to achieve higher effectiveness? Ablating transformer layers and heads to analyze the
impact on the output scores may help answer these questions. A better understanding to trans-
formers can also help us prune less-important layers so we can reduce model size and improve
efficiency.

Using attention weights to understand a decision-process is very attractive due to its simplic-
ity and similarity to human attention. However, researchers have shown that attention weights
may not directly correlate to the final output score [87]. Gradient-based methods [193] are per-
haps more promising for such an analysis. For example, they can be used to break down the
relevance score to every single word in a document. A relevance score of 0.987 may be com-
posed of 0.3 from word A in the query, 0.2 from word B in the document, etc. It would be of great
value to leverage NLP tools to understand transformers’ decision-making process with a focus
on IR.
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Figure 6.1: An attention layer responsible for resolving verb-object. Image produced from https:
//huggingface.co/exbert/?model=bert-base-uncased.

Neural Relevance Models. With query generation models, there are many possible applica-
tions. One of them is to generate queries for pseudo-relevant documents and use the new queries
to improve the original query. This approach has a strong connection to the classic relevance
models proposed by Lavrenko and Croft [106] so we refer to the prospective method as neural
relevance models — relevance models estimated directly using a generative model instead of statis-
tical language models. One direction is to use a neural language model which does not take into
account word ordering. This approach fits nicely into the original relevance model framework.
That is, P(w|D) in Eq 3.3 is now estimated with a neural language model. Another direction is
to retain word ordering and use a generative model to directly rewrite queries given a list of
pseudo-relevance documents.

Optimizing GDMTL for Generation Effectiveness. In Chapter 5 we used multi-task learn-
ing to jointly model ranking and generation. The former has an effectiveness objective while
the latter has a readability objective. We try to transfer the ranking knowledge to generation,
but it is very subtle how this works without a direct optimization. How the generation for the
GDMTL framework can be directly optimized for effectiveness is unclear. That is, can we opti-
mize ranking effectiveness using supervised learning while optimizing generation effectiveness
using reinforcement learning?
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144 +  Chapter 6. Summary

Learning Efficiency. Training a transformer for either ranking or generation is time-consuming.
Due to the task conditioning (instructing the model whether it is a ranking or a generation task),
the same sequence must go through the network multiple times. Developing a way to reduce this
constant cost would increase the training speed by approximately 50%.

Modeling for Documents. The last direction we hope to further explore is to extend our work
to documents. Our work mostly focused on passages or short documents which often contain
no more than 200 words. This was largely limited by the complexity of the attention mechanism
which has a time and space complexity of O(N?) where N is the length of the input sequence.
Applying the original transformer on long documents is thus infeasible practically. Several re-
searchers are trying to solve this problem. In IR, Hofstatter et al. [82] proposed a local window-
based attention method that reduced the complexity to O(N X I) where [ is the window size.
Mitra et al. [133] proposed changing the order of computing attention weights and reduce the
complexity to O(N X d) where d is the dimension of key vectors and d <« N for documents.
Considering that long documents are pervasive, extending the methods in this thesis to long
documents is an interesting and important future direction.
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